Thanks to the workaround in obs::tools, gfx::shader::shader now supports dynamically rebuilding the properties with new properties without crashing OBS Studio. This effectively allows you to have an up to date view of the current parameters for the shader technique.
Additionally with file watching, live development of shaders is possible at very little cost. Currently only file times and size is looked at every 333ms, but in the future it is possible to also watch for file renames and more.
The current implementation of obs_properties_remove_by_name corrupts the obs_properties_t object whenever it is called on the first or last property in the list. This leads to rapid unscheduled disassembly, and therefore must be fixed in order for this function to be used.
Fixed by upstream PR https://github.com/obsproject/obs-studio/pull/2257.
Removes the stutter when re-opening the properties dialog which was caused by recompiling the same exact shader every time this happened. Also paves the way for simple file watching.
This does not rely on the "integrated" clang-format, but instead uses a custom target to achieve the goal. Supports file filtering (to ensure that clang-format only affects supported files), automatic dependency by the project (always run before build), multiple targets and a global target.
Options are:
- TARGETS <target> ...: Targets to add clang-format support to.
- DEPENDENCY: Add a dependency to the given targets so that clang-format runs before building.
- REGEX: Filter out files of the given targets, defaults to '\.(h|hpp|c|cpp)'.
- GLOBAL: Add a global CLANG_FORMAT target.
Getting the resolution of a source is very expensive in libOBS, as libOBS does not cache it and instead always calls into the filters and sources to determine the actual source. This also leads to potential lockups due to the filter list mutex being locked for the target source.
Therefore instead of calling it multiple times, cache the result of the call, if that result is even necessary. This reduces the need to synchronize lightly parallelized work (UI and libOBS code) and helps against the potential race condition in libOBS.
Prevents the use of get() and reset() where not actually needed and forces us to actually implement all of the methods needed to interface with the object, leading to cleaner and safer code.
These two wrap the underlying gs_epass and gs_effect_technique objects, to allow direct and improved access to them without relying on the libobs API to provide this access for us. Additionally these make it safe for us to use them instead of relying on C-like code to deal with it.