When a source was renamed, obs::source_tracker did not use the new name and instead relied on the old name. This caused source lists with this feature to slowly degrade over time as sources were renamed, until libobs was restarted.
With this fix the renamed sources are now properly tracked, updating as expected.
Related Issue: #64
Automatically reformats the code before committing any changes using clang-format, to ensure that there are no additional reformatting commits needed in the future.
This requires clang-format to be globally available to git, either through path or by directly being in the git bash directory. The hook will only run if a developer actually installs it with install.sh.
Clang on Windows and Clang on Linux behave differently, and of course GCC on Windows (MinGW) and GCC on Linux do too. This is the point where using either compiler on either platform should successfully compile the project without any issues.
Clang and GCC have a ton of warnings however, which definitely need to be fixed in the near future. Some of them are great warnings, like old C style casts, others are non-sense like suggest brackets.
Fixes#47Fixes#60
Automatically updates the long description (hover text) if the Type or Subtype field is changed, allowing for more contextual information about what the selected information does.
This refactors the SDF Effects to use a normal blend function instead of doing the blend in the effect itself, improving quality and reducing problematic sampling issues. In addition to this, the effect files have been cleaned up slightly and renamed to their proper names. Glow and Stroke are now supported, which solves both #2 and #4 in one go.
The caching optimization has also now been implemented, reducing the number of renders for this filter to 1 for each tick.
This fixes a dead lock due to attempting to lock the same filter mutex twice, causing libOBS to completely lock up on every mutex. This extends the fix for 4fc25cfd8d.
Additionally this switches to a proper queue system for audio, so we no longer cause audio stuttering or audio skipping.
To further distance the code from having to do too much manually, the graphics context is now available as a managed class. All places that previously used obs_enter_graphics and obs_leave_graphics are now using the new gs::context class instead.
libOBS will simply forget to unlock a mutex if you set the boundary size to zero, resulting in the filters dialog for that source simply getting stuck. Why video rendering can affect the audio filter dialogs is a question for another time, but it's best to just accept it and move on.
Previously this would not do anything correctly, as the call to obs_source_get_flags does not return anything for most sources. Instead obs_source_get_output_flags should be used to verify that we actually have a video or audio capable source to work with.
obs::source_tracker allows us to do more over more versions of OBS Studio, so we are able to enumerate any and all Sources, Scenes and Transitions that weren't created private. If we were to rely on libOBS for this, we would need to limit ourselves to version 23 or higher, but with this we can go very far back - as far back as the global event system was fully supported.
Audio capture previously needed an additional class, however there is no need for this if this can be done together with the actual obs::source object. So obs::source now has a new audio_data event that can be listened to, which handles capturing audio data if requested.
Additionally all other events are now selectively listened to, instead of permanently listening to them. This should drastically reduce the overhead of using obs::source.
Dual Filtering (or Dual Kawase) is an approximation of Gaussian Blur that can reach much higher Blur sizes at a much lower cost. However it is locked to a 2^n size, which means that currently it isn't possible to use it for blur sizes like 19, 24 and 31.
The Blur works by using the linear sampling of a GPU, combined with down- and upsampling and carefully placed sampling points. This means that there is no need for a linear optimized version of this Blur.
Related: #45, #6
While Gaussian Blur is not a Blur type that really benefits much from linear sampling, it can be used for a slight quality and gpu usage reduction. However for Area and Directional Blur there is a better alternative: Dual Filtering Blur. And as with all other currently implement Linear versions of Blur, only Area and Directional Blur are supported.
This type of Gaussian Blur also has the loading hitch that exists in normal Gaussian Blur.
Related: #45, #6
Gaussian Blur is another Blur that now supports the new system, increasing the maxium Blur size to 128 and adding support for Rotational and Zoom blur. Various optimizations were done to the actual shader code which further reduced the GPU usage.
Currently the Gaussian curve is recalculated when the blur is first created, which can lead to a short hitch due to it having to search for the correct kernels. This is currently unavoidable and expected behavior until a better solution is found.
Related: #45, #6
Box Blur is a prime candidate for Linear optimizations, and as such reducing the total necessary samples by about half. However due to the reduction in samples, only Area and Directional Blur are supported.
Related: #45, #6
Box Blur is the first to be on the new system and has received all the new features and optimizations available. The maximum Blur size has been increased to 128, Rotational and Zoom Blur are supported and a small optimization has been done to the shader.
Related: #45, #6