furnace/extern/fftw/dft/simd/common/t1sv_4.c

203 lines
6.5 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:45:58 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_twiddle.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 4 -name t1sv_4 -include dft/simd/ts.h */
/*
* This function contains 22 FP additions, 12 FP multiplications,
* (or, 16 additions, 6 multiplications, 6 fused multiply/add),
* 15 stack variables, 0 constants, and 16 memory accesses
*/
#include "dft/simd/ts.h"
static void t1sv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
{
INT m;
for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
V T1, Tv, T7, Tu, Te, To, Tk, Tq;
T1 = LD(&(ri[0]), ms, &(ri[0]));
Tv = LD(&(ii[0]), ms, &(ii[0]));
{
V T3, T6, T4, Tt, T2, T5;
T3 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
T6 = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
T2 = LDW(&(W[TWVL * 2]));
T4 = VMUL(T2, T3);
Tt = VMUL(T2, T6);
T5 = LDW(&(W[TWVL * 3]));
T7 = VFMA(T5, T6, T4);
Tu = VFNMS(T5, T3, Tt);
}
{
V Ta, Td, Tb, Tn, T9, Tc;
Ta = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
Td = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
T9 = LDW(&(W[0]));
Tb = VMUL(T9, Ta);
Tn = VMUL(T9, Td);
Tc = LDW(&(W[TWVL * 1]));
Te = VFMA(Tc, Td, Tb);
To = VFNMS(Tc, Ta, Tn);
}
{
V Tg, Tj, Th, Tp, Tf, Ti;
Tg = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
Tj = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
Tf = LDW(&(W[TWVL * 4]));
Th = VMUL(Tf, Tg);
Tp = VMUL(Tf, Tj);
Ti = LDW(&(W[TWVL * 5]));
Tk = VFMA(Ti, Tj, Th);
Tq = VFNMS(Ti, Tg, Tp);
}
{
V T8, Tl, Ts, Tw;
T8 = VADD(T1, T7);
Tl = VADD(Te, Tk);
ST(&(ri[WS(rs, 2)]), VSUB(T8, Tl), ms, &(ri[0]));
ST(&(ri[0]), VADD(T8, Tl), ms, &(ri[0]));
Ts = VADD(To, Tq);
Tw = VADD(Tu, Tv);
ST(&(ii[0]), VADD(Ts, Tw), ms, &(ii[0]));
ST(&(ii[WS(rs, 2)]), VSUB(Tw, Ts), ms, &(ii[0]));
}
{
V Tm, Tr, Tx, Ty;
Tm = VSUB(T1, T7);
Tr = VSUB(To, Tq);
ST(&(ri[WS(rs, 3)]), VSUB(Tm, Tr), ms, &(ri[WS(rs, 1)]));
ST(&(ri[WS(rs, 1)]), VADD(Tm, Tr), ms, &(ri[WS(rs, 1)]));
Tx = VSUB(Tv, Tu);
Ty = VSUB(Te, Tk);
ST(&(ii[WS(rs, 1)]), VSUB(Tx, Ty), ms, &(ii[WS(rs, 1)]));
ST(&(ii[WS(rs, 3)]), VADD(Ty, Tx), ms, &(ii[WS(rs, 1)]));
}
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(0, 1),
VTW(0, 2),
VTW(0, 3),
{ TW_NEXT, (2 * VL), 0 }
};
static const ct_desc desc = { 4, XSIMD_STRING("t1sv_4"), twinstr, &GENUS, { 16, 6, 6, 0 }, 0, 0, 0 };
void XSIMD(codelet_t1sv_4) (planner *p) {
X(kdft_dit_register) (p, t1sv_4, &desc);
}
#else
/* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -n 4 -name t1sv_4 -include dft/simd/ts.h */
/*
* This function contains 22 FP additions, 12 FP multiplications,
* (or, 16 additions, 6 multiplications, 6 fused multiply/add),
* 13 stack variables, 0 constants, and 16 memory accesses
*/
#include "dft/simd/ts.h"
static void t1sv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
{
INT m;
for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
V T1, Tp, T6, To, Tc, Tk, Th, Tl;
T1 = LD(&(ri[0]), ms, &(ri[0]));
Tp = LD(&(ii[0]), ms, &(ii[0]));
{
V T3, T5, T2, T4;
T3 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
T5 = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
T2 = LDW(&(W[TWVL * 2]));
T4 = LDW(&(W[TWVL * 3]));
T6 = VFMA(T2, T3, VMUL(T4, T5));
To = VFNMS(T4, T3, VMUL(T2, T5));
}
{
V T9, Tb, T8, Ta;
T9 = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
Tb = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
T8 = LDW(&(W[0]));
Ta = LDW(&(W[TWVL * 1]));
Tc = VFMA(T8, T9, VMUL(Ta, Tb));
Tk = VFNMS(Ta, T9, VMUL(T8, Tb));
}
{
V Te, Tg, Td, Tf;
Te = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
Tg = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
Td = LDW(&(W[TWVL * 4]));
Tf = LDW(&(W[TWVL * 5]));
Th = VFMA(Td, Te, VMUL(Tf, Tg));
Tl = VFNMS(Tf, Te, VMUL(Td, Tg));
}
{
V T7, Ti, Tn, Tq;
T7 = VADD(T1, T6);
Ti = VADD(Tc, Th);
ST(&(ri[WS(rs, 2)]), VSUB(T7, Ti), ms, &(ri[0]));
ST(&(ri[0]), VADD(T7, Ti), ms, &(ri[0]));
Tn = VADD(Tk, Tl);
Tq = VADD(To, Tp);
ST(&(ii[0]), VADD(Tn, Tq), ms, &(ii[0]));
ST(&(ii[WS(rs, 2)]), VSUB(Tq, Tn), ms, &(ii[0]));
}
{
V Tj, Tm, Tr, Ts;
Tj = VSUB(T1, T6);
Tm = VSUB(Tk, Tl);
ST(&(ri[WS(rs, 3)]), VSUB(Tj, Tm), ms, &(ri[WS(rs, 1)]));
ST(&(ri[WS(rs, 1)]), VADD(Tj, Tm), ms, &(ri[WS(rs, 1)]));
Tr = VSUB(Tp, To);
Ts = VSUB(Tc, Th);
ST(&(ii[WS(rs, 1)]), VSUB(Tr, Ts), ms, &(ii[WS(rs, 1)]));
ST(&(ii[WS(rs, 3)]), VADD(Ts, Tr), ms, &(ii[WS(rs, 1)]));
}
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(0, 1),
VTW(0, 2),
VTW(0, 3),
{ TW_NEXT, (2 * VL), 0 }
};
static const ct_desc desc = { 4, XSIMD_STRING("t1sv_4"), twinstr, &GENUS, { 16, 6, 6, 0 }, 0, 0, 0 };
void XSIMD(codelet_t1sv_4) (planner *p) {
X(kdft_dit_register) (p, t1sv_4, &desc);
}
#endif