/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:45:58 EDT 2021 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 4 -name t1sv_4 -include dft/simd/ts.h */ /* * This function contains 22 FP additions, 12 FP multiplications, * (or, 16 additions, 6 multiplications, 6 fused multiply/add), * 15 stack variables, 0 constants, and 16 memory accesses */ #include "dft/simd/ts.h" static void t1sv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { { INT m; for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(8, rs)) { V T1, Tv, T7, Tu, Te, To, Tk, Tq; T1 = LD(&(ri[0]), ms, &(ri[0])); Tv = LD(&(ii[0]), ms, &(ii[0])); { V T3, T6, T4, Tt, T2, T5; T3 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); T6 = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); T2 = LDW(&(W[TWVL * 2])); T4 = VMUL(T2, T3); Tt = VMUL(T2, T6); T5 = LDW(&(W[TWVL * 3])); T7 = VFMA(T5, T6, T4); Tu = VFNMS(T5, T3, Tt); } { V Ta, Td, Tb, Tn, T9, Tc; Ta = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); Td = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); T9 = LDW(&(W[0])); Tb = VMUL(T9, Ta); Tn = VMUL(T9, Td); Tc = LDW(&(W[TWVL * 1])); Te = VFMA(Tc, Td, Tb); To = VFNMS(Tc, Ta, Tn); } { V Tg, Tj, Th, Tp, Tf, Ti; Tg = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); Tj = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); Tf = LDW(&(W[TWVL * 4])); Th = VMUL(Tf, Tg); Tp = VMUL(Tf, Tj); Ti = LDW(&(W[TWVL * 5])); Tk = VFMA(Ti, Tj, Th); Tq = VFNMS(Ti, Tg, Tp); } { V T8, Tl, Ts, Tw; T8 = VADD(T1, T7); Tl = VADD(Te, Tk); ST(&(ri[WS(rs, 2)]), VSUB(T8, Tl), ms, &(ri[0])); ST(&(ri[0]), VADD(T8, Tl), ms, &(ri[0])); Ts = VADD(To, Tq); Tw = VADD(Tu, Tv); ST(&(ii[0]), VADD(Ts, Tw), ms, &(ii[0])); ST(&(ii[WS(rs, 2)]), VSUB(Tw, Ts), ms, &(ii[0])); } { V Tm, Tr, Tx, Ty; Tm = VSUB(T1, T7); Tr = VSUB(To, Tq); ST(&(ri[WS(rs, 3)]), VSUB(Tm, Tr), ms, &(ri[WS(rs, 1)])); ST(&(ri[WS(rs, 1)]), VADD(Tm, Tr), ms, &(ri[WS(rs, 1)])); Tx = VSUB(Tv, Tu); Ty = VSUB(Te, Tk); ST(&(ii[WS(rs, 1)]), VSUB(Tx, Ty), ms, &(ii[WS(rs, 1)])); ST(&(ii[WS(rs, 3)]), VADD(Ty, Tx), ms, &(ii[WS(rs, 1)])); } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), { TW_NEXT, (2 * VL), 0 } }; static const ct_desc desc = { 4, XSIMD_STRING("t1sv_4"), twinstr, &GENUS, { 16, 6, 6, 0 }, 0, 0, 0 }; void XSIMD(codelet_t1sv_4) (planner *p) { X(kdft_dit_register) (p, t1sv_4, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -n 4 -name t1sv_4 -include dft/simd/ts.h */ /* * This function contains 22 FP additions, 12 FP multiplications, * (or, 16 additions, 6 multiplications, 6 fused multiply/add), * 13 stack variables, 0 constants, and 16 memory accesses */ #include "dft/simd/ts.h" static void t1sv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { { INT m; for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(8, rs)) { V T1, Tp, T6, To, Tc, Tk, Th, Tl; T1 = LD(&(ri[0]), ms, &(ri[0])); Tp = LD(&(ii[0]), ms, &(ii[0])); { V T3, T5, T2, T4; T3 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); T5 = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); T2 = LDW(&(W[TWVL * 2])); T4 = LDW(&(W[TWVL * 3])); T6 = VFMA(T2, T3, VMUL(T4, T5)); To = VFNMS(T4, T3, VMUL(T2, T5)); } { V T9, Tb, T8, Ta; T9 = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); Tb = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); T8 = LDW(&(W[0])); Ta = LDW(&(W[TWVL * 1])); Tc = VFMA(T8, T9, VMUL(Ta, Tb)); Tk = VFNMS(Ta, T9, VMUL(T8, Tb)); } { V Te, Tg, Td, Tf; Te = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); Tg = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); Td = LDW(&(W[TWVL * 4])); Tf = LDW(&(W[TWVL * 5])); Th = VFMA(Td, Te, VMUL(Tf, Tg)); Tl = VFNMS(Tf, Te, VMUL(Td, Tg)); } { V T7, Ti, Tn, Tq; T7 = VADD(T1, T6); Ti = VADD(Tc, Th); ST(&(ri[WS(rs, 2)]), VSUB(T7, Ti), ms, &(ri[0])); ST(&(ri[0]), VADD(T7, Ti), ms, &(ri[0])); Tn = VADD(Tk, Tl); Tq = VADD(To, Tp); ST(&(ii[0]), VADD(Tn, Tq), ms, &(ii[0])); ST(&(ii[WS(rs, 2)]), VSUB(Tq, Tn), ms, &(ii[0])); } { V Tj, Tm, Tr, Ts; Tj = VSUB(T1, T6); Tm = VSUB(Tk, Tl); ST(&(ri[WS(rs, 3)]), VSUB(Tj, Tm), ms, &(ri[WS(rs, 1)])); ST(&(ri[WS(rs, 1)]), VADD(Tj, Tm), ms, &(ri[WS(rs, 1)])); Tr = VSUB(Tp, To); Ts = VSUB(Tc, Th); ST(&(ii[WS(rs, 1)]), VSUB(Tr, Ts), ms, &(ii[WS(rs, 1)])); ST(&(ii[WS(rs, 3)]), VADD(Ts, Tr), ms, &(ii[WS(rs, 1)])); } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), { TW_NEXT, (2 * VL), 0 } }; static const ct_desc desc = { 4, XSIMD_STRING("t1sv_4"), twinstr, &GENUS, { 16, 6, 6, 0 }, 0, 0, 0 }; void XSIMD(codelet_t1sv_4) (planner *p) { X(kdft_dit_register) (p, t1sv_4, &desc); } #endif