furnace/extern/fftw/rdft/scalar/r2cf/hf_7.c
2022-05-31 03:24:29 -05:00

354 lines
10 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:12 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -n 7 -dit -name hf_7 -include rdft/scalar/hf.h */
/*
* This function contains 72 FP additions, 66 FP multiplications,
* (or, 18 additions, 12 multiplications, 54 fused multiply/add),
* 37 stack variables, 6 constants, and 28 memory accesses
*/
#include "rdft/scalar/hf.h"
static void hf_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP974927912, +0.974927912181823607018131682993931217232785801);
DK(KP900968867, +0.900968867902419126236102319507445051165919162);
DK(KP801937735, +0.801937735804838252472204639014890102331838324);
DK(KP554958132, +0.554958132087371191422194871006410481067288862);
DK(KP692021471, +0.692021471630095869627814897002069140197260599);
DK(KP356895867, +0.356895867892209443894399510021300583399127187);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
E T1, T19, Te, T1i, TR, T1a, Tr, T1h, TM, T1b, TE, T1g, TW, T1c;
T1 = cr[0];
T19 = ci[0];
{
E T3, T6, T4, TN, T9, Tc, Ta, TP, T2, T8;
T3 = cr[WS(rs, 1)];
T6 = ci[WS(rs, 1)];
T2 = W[0];
T4 = T2 * T3;
TN = T2 * T6;
T9 = cr[WS(rs, 6)];
Tc = ci[WS(rs, 6)];
T8 = W[10];
Ta = T8 * T9;
TP = T8 * Tc;
{
E T7, TO, Td, TQ, T5, Tb;
T5 = W[1];
T7 = FMA(T5, T6, T4);
TO = FNMS(T5, T3, TN);
Tb = W[11];
Td = FMA(Tb, Tc, Ta);
TQ = FNMS(Tb, T9, TP);
Te = T7 + Td;
T1i = Td - T7;
TR = TO - TQ;
T1a = TO + TQ;
}
}
{
E Tg, Tj, Th, TI, Tm, Tp, Tn, TK, Tf, Tl;
Tg = cr[WS(rs, 2)];
Tj = ci[WS(rs, 2)];
Tf = W[2];
Th = Tf * Tg;
TI = Tf * Tj;
Tm = cr[WS(rs, 5)];
Tp = ci[WS(rs, 5)];
Tl = W[8];
Tn = Tl * Tm;
TK = Tl * Tp;
{
E Tk, TJ, Tq, TL, Ti, To;
Ti = W[3];
Tk = FMA(Ti, Tj, Th);
TJ = FNMS(Ti, Tg, TI);
To = W[9];
Tq = FMA(To, Tp, Tn);
TL = FNMS(To, Tm, TK);
Tr = Tk + Tq;
T1h = Tq - Tk;
TM = TJ - TL;
T1b = TJ + TL;
}
}
{
E Tt, Tw, Tu, TS, Tz, TC, TA, TU, Ts, Ty;
Tt = cr[WS(rs, 3)];
Tw = ci[WS(rs, 3)];
Ts = W[4];
Tu = Ts * Tt;
TS = Ts * Tw;
Tz = cr[WS(rs, 4)];
TC = ci[WS(rs, 4)];
Ty = W[6];
TA = Ty * Tz;
TU = Ty * TC;
{
E Tx, TT, TD, TV, Tv, TB;
Tv = W[5];
Tx = FMA(Tv, Tw, Tu);
TT = FNMS(Tv, Tt, TS);
TB = W[7];
TD = FMA(TB, TC, TA);
TV = FNMS(TB, Tz, TU);
TE = Tx + TD;
T1g = TD - Tx;
TW = TT - TV;
T1c = TT + TV;
}
}
cr[0] = T1 + Te + Tr + TE;
{
E TG, TY, TF, TX, TH;
TF = FNMS(KP356895867, Tr, Te);
TG = FNMS(KP692021471, TF, TE);
TX = FMA(KP554958132, TW, TR);
TY = FMA(KP801937735, TX, TM);
TH = FNMS(KP900968867, TG, T1);
ci[0] = FNMS(KP974927912, TY, TH);
cr[WS(rs, 1)] = FMA(KP974927912, TY, TH);
}
ci[WS(rs, 6)] = T1a + T1b + T1c + T19;
{
E T1r, T1u, T1q, T1t, T1s;
T1q = FNMS(KP356895867, T1b, T1a);
T1r = FNMS(KP692021471, T1q, T1c);
T1t = FMA(KP554958132, T1g, T1i);
T1u = FMA(KP801937735, T1t, T1h);
T1s = FNMS(KP900968867, T1r, T19);
cr[WS(rs, 6)] = FMS(KP974927912, T1u, T1s);
ci[WS(rs, 5)] = FMA(KP974927912, T1u, T1s);
}
{
E T1m, T1p, T1l, T1o, T1n;
T1l = FNMS(KP356895867, T1a, T1c);
T1m = FNMS(KP692021471, T1l, T1b);
T1o = FMA(KP554958132, T1h, T1g);
T1p = FNMS(KP801937735, T1o, T1i);
T1n = FNMS(KP900968867, T1m, T19);
cr[WS(rs, 5)] = FMS(KP974927912, T1p, T1n);
ci[WS(rs, 4)] = FMA(KP974927912, T1p, T1n);
}
{
E T1e, T1k, T1d, T1j, T1f;
T1d = FNMS(KP356895867, T1c, T1b);
T1e = FNMS(KP692021471, T1d, T1a);
T1j = FNMS(KP554958132, T1i, T1h);
T1k = FNMS(KP801937735, T1j, T1g);
T1f = FNMS(KP900968867, T1e, T19);
cr[WS(rs, 4)] = FMS(KP974927912, T1k, T1f);
ci[WS(rs, 3)] = FMA(KP974927912, T1k, T1f);
}
{
E T15, T18, T14, T17, T16;
T14 = FNMS(KP356895867, TE, Tr);
T15 = FNMS(KP692021471, T14, Te);
T17 = FNMS(KP554958132, TR, TM);
T18 = FNMS(KP801937735, T17, TW);
T16 = FNMS(KP900968867, T15, T1);
ci[WS(rs, 2)] = FNMS(KP974927912, T18, T16);
cr[WS(rs, 3)] = FMA(KP974927912, T18, T16);
}
{
E T10, T13, TZ, T12, T11;
TZ = FNMS(KP356895867, Te, TE);
T10 = FNMS(KP692021471, TZ, Tr);
T12 = FMA(KP554958132, TM, TW);
T13 = FNMS(KP801937735, T12, TR);
T11 = FNMS(KP900968867, T10, T1);
ci[WS(rs, 1)] = FNMS(KP974927912, T13, T11);
cr[WS(rs, 2)] = FMA(KP974927912, T13, T11);
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 7 },
{ TW_NEXT, 1, 0 }
};
static const hc2hc_desc desc = { 7, "hf_7", twinstr, &GENUS, { 18, 12, 54, 0 } };
void X(codelet_hf_7) (planner *p) {
X(khc2hc_register) (p, hf_7, &desc);
}
#else
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 7 -dit -name hf_7 -include rdft/scalar/hf.h */
/*
* This function contains 72 FP additions, 60 FP multiplications,
* (or, 36 additions, 24 multiplications, 36 fused multiply/add),
* 29 stack variables, 6 constants, and 28 memory accesses
*/
#include "rdft/scalar/hf.h"
static void hf_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP222520933, +0.222520933956314404288902564496794759466355569);
DK(KP900968867, +0.900968867902419126236102319507445051165919162);
DK(KP623489801, +0.623489801858733530525004884004239810632274731);
DK(KP433883739, +0.433883739117558120475768332848358754609990728);
DK(KP974927912, +0.974927912181823607018131682993931217232785801);
DK(KP781831482, +0.781831482468029808708444526674057750232334519);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
E T1, TT, Tc, TV, TC, TO, Tn, TS, TI, TP, Ty, TU, TF, TQ;
T1 = cr[0];
TT = ci[0];
{
E T6, TA, Tb, TB;
{
E T3, T5, T2, T4;
T3 = cr[WS(rs, 1)];
T5 = ci[WS(rs, 1)];
T2 = W[0];
T4 = W[1];
T6 = FMA(T2, T3, T4 * T5);
TA = FNMS(T4, T3, T2 * T5);
}
{
E T8, Ta, T7, T9;
T8 = cr[WS(rs, 6)];
Ta = ci[WS(rs, 6)];
T7 = W[10];
T9 = W[11];
Tb = FMA(T7, T8, T9 * Ta);
TB = FNMS(T9, T8, T7 * Ta);
}
Tc = T6 + Tb;
TV = TA + TB;
TC = TA - TB;
TO = Tb - T6;
}
{
E Th, TG, Tm, TH;
{
E Te, Tg, Td, Tf;
Te = cr[WS(rs, 2)];
Tg = ci[WS(rs, 2)];
Td = W[2];
Tf = W[3];
Th = FMA(Td, Te, Tf * Tg);
TG = FNMS(Tf, Te, Td * Tg);
}
{
E Tj, Tl, Ti, Tk;
Tj = cr[WS(rs, 5)];
Tl = ci[WS(rs, 5)];
Ti = W[8];
Tk = W[9];
Tm = FMA(Ti, Tj, Tk * Tl);
TH = FNMS(Tk, Tj, Ti * Tl);
}
Tn = Th + Tm;
TS = TG + TH;
TI = TG - TH;
TP = Th - Tm;
}
{
E Ts, TD, Tx, TE;
{
E Tp, Tr, To, Tq;
Tp = cr[WS(rs, 3)];
Tr = ci[WS(rs, 3)];
To = W[4];
Tq = W[5];
Ts = FMA(To, Tp, Tq * Tr);
TD = FNMS(Tq, Tp, To * Tr);
}
{
E Tu, Tw, Tt, Tv;
Tu = cr[WS(rs, 4)];
Tw = ci[WS(rs, 4)];
Tt = W[6];
Tv = W[7];
Tx = FMA(Tt, Tu, Tv * Tw);
TE = FNMS(Tv, Tu, Tt * Tw);
}
Ty = Ts + Tx;
TU = TD + TE;
TF = TD - TE;
TQ = Tx - Ts;
}
{
E TL, TK, TZ, T10;
cr[0] = T1 + Tc + Tn + Ty;
TL = FMA(KP781831482, TC, KP974927912 * TI) + (KP433883739 * TF);
TK = FMA(KP623489801, Tc, T1) + FNMA(KP900968867, Ty, KP222520933 * Tn);
ci[0] = TK - TL;
cr[WS(rs, 1)] = TK + TL;
ci[WS(rs, 6)] = TV + TS + TU + TT;
TZ = FMA(KP781831482, TO, KP433883739 * TQ) - (KP974927912 * TP);
T10 = FMA(KP623489801, TV, TT) + FNMA(KP900968867, TU, KP222520933 * TS);
cr[WS(rs, 6)] = TZ - T10;
ci[WS(rs, 5)] = TZ + T10;
}
{
E TX, TY, TR, TW;
TX = FMA(KP974927912, TO, KP433883739 * TP) - (KP781831482 * TQ);
TY = FMA(KP623489801, TU, TT) + FNMA(KP900968867, TS, KP222520933 * TV);
cr[WS(rs, 5)] = TX - TY;
ci[WS(rs, 4)] = TX + TY;
TR = FMA(KP433883739, TO, KP781831482 * TP) + (KP974927912 * TQ);
TW = FMA(KP623489801, TS, TT) + FNMA(KP222520933, TU, KP900968867 * TV);
cr[WS(rs, 4)] = TR - TW;
ci[WS(rs, 3)] = TR + TW;
}
{
E TN, TM, TJ, Tz;
TN = FMA(KP433883739, TC, KP974927912 * TF) - (KP781831482 * TI);
TM = FMA(KP623489801, Tn, T1) + FNMA(KP222520933, Ty, KP900968867 * Tc);
ci[WS(rs, 2)] = TM - TN;
cr[WS(rs, 3)] = TM + TN;
TJ = FNMS(KP781831482, TF, KP974927912 * TC) - (KP433883739 * TI);
Tz = FMA(KP623489801, Ty, T1) + FNMA(KP900968867, Tn, KP222520933 * Tc);
ci[WS(rs, 1)] = Tz - TJ;
cr[WS(rs, 2)] = Tz + TJ;
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 7 },
{ TW_NEXT, 1, 0 }
};
static const hc2hc_desc desc = { 7, "hf_7", twinstr, &GENUS, { 36, 24, 36, 0 } };
void X(codelet_hf_7) (planner *p) {
X(khc2hc_register) (p, hf_7, &desc);
}
#endif