/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:46:12 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -n 7 -dit -name hf_7 -include rdft/scalar/hf.h */ /* * This function contains 72 FP additions, 66 FP multiplications, * (or, 18 additions, 12 multiplications, 54 fused multiply/add), * 37 stack variables, 6 constants, and 28 memory accesses */ #include "rdft/scalar/hf.h" static void hf_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP974927912, +0.974927912181823607018131682993931217232785801); DK(KP900968867, +0.900968867902419126236102319507445051165919162); DK(KP801937735, +0.801937735804838252472204639014890102331838324); DK(KP554958132, +0.554958132087371191422194871006410481067288862); DK(KP692021471, +0.692021471630095869627814897002069140197260599); DK(KP356895867, +0.356895867892209443894399510021300583399127187); { INT m; for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { E T1, T19, Te, T1i, TR, T1a, Tr, T1h, TM, T1b, TE, T1g, TW, T1c; T1 = cr[0]; T19 = ci[0]; { E T3, T6, T4, TN, T9, Tc, Ta, TP, T2, T8; T3 = cr[WS(rs, 1)]; T6 = ci[WS(rs, 1)]; T2 = W[0]; T4 = T2 * T3; TN = T2 * T6; T9 = cr[WS(rs, 6)]; Tc = ci[WS(rs, 6)]; T8 = W[10]; Ta = T8 * T9; TP = T8 * Tc; { E T7, TO, Td, TQ, T5, Tb; T5 = W[1]; T7 = FMA(T5, T6, T4); TO = FNMS(T5, T3, TN); Tb = W[11]; Td = FMA(Tb, Tc, Ta); TQ = FNMS(Tb, T9, TP); Te = T7 + Td; T1i = Td - T7; TR = TO - TQ; T1a = TO + TQ; } } { E Tg, Tj, Th, TI, Tm, Tp, Tn, TK, Tf, Tl; Tg = cr[WS(rs, 2)]; Tj = ci[WS(rs, 2)]; Tf = W[2]; Th = Tf * Tg; TI = Tf * Tj; Tm = cr[WS(rs, 5)]; Tp = ci[WS(rs, 5)]; Tl = W[8]; Tn = Tl * Tm; TK = Tl * Tp; { E Tk, TJ, Tq, TL, Ti, To; Ti = W[3]; Tk = FMA(Ti, Tj, Th); TJ = FNMS(Ti, Tg, TI); To = W[9]; Tq = FMA(To, Tp, Tn); TL = FNMS(To, Tm, TK); Tr = Tk + Tq; T1h = Tq - Tk; TM = TJ - TL; T1b = TJ + TL; } } { E Tt, Tw, Tu, TS, Tz, TC, TA, TU, Ts, Ty; Tt = cr[WS(rs, 3)]; Tw = ci[WS(rs, 3)]; Ts = W[4]; Tu = Ts * Tt; TS = Ts * Tw; Tz = cr[WS(rs, 4)]; TC = ci[WS(rs, 4)]; Ty = W[6]; TA = Ty * Tz; TU = Ty * TC; { E Tx, TT, TD, TV, Tv, TB; Tv = W[5]; Tx = FMA(Tv, Tw, Tu); TT = FNMS(Tv, Tt, TS); TB = W[7]; TD = FMA(TB, TC, TA); TV = FNMS(TB, Tz, TU); TE = Tx + TD; T1g = TD - Tx; TW = TT - TV; T1c = TT + TV; } } cr[0] = T1 + Te + Tr + TE; { E TG, TY, TF, TX, TH; TF = FNMS(KP356895867, Tr, Te); TG = FNMS(KP692021471, TF, TE); TX = FMA(KP554958132, TW, TR); TY = FMA(KP801937735, TX, TM); TH = FNMS(KP900968867, TG, T1); ci[0] = FNMS(KP974927912, TY, TH); cr[WS(rs, 1)] = FMA(KP974927912, TY, TH); } ci[WS(rs, 6)] = T1a + T1b + T1c + T19; { E T1r, T1u, T1q, T1t, T1s; T1q = FNMS(KP356895867, T1b, T1a); T1r = FNMS(KP692021471, T1q, T1c); T1t = FMA(KP554958132, T1g, T1i); T1u = FMA(KP801937735, T1t, T1h); T1s = FNMS(KP900968867, T1r, T19); cr[WS(rs, 6)] = FMS(KP974927912, T1u, T1s); ci[WS(rs, 5)] = FMA(KP974927912, T1u, T1s); } { E T1m, T1p, T1l, T1o, T1n; T1l = FNMS(KP356895867, T1a, T1c); T1m = FNMS(KP692021471, T1l, T1b); T1o = FMA(KP554958132, T1h, T1g); T1p = FNMS(KP801937735, T1o, T1i); T1n = FNMS(KP900968867, T1m, T19); cr[WS(rs, 5)] = FMS(KP974927912, T1p, T1n); ci[WS(rs, 4)] = FMA(KP974927912, T1p, T1n); } { E T1e, T1k, T1d, T1j, T1f; T1d = FNMS(KP356895867, T1c, T1b); T1e = FNMS(KP692021471, T1d, T1a); T1j = FNMS(KP554958132, T1i, T1h); T1k = FNMS(KP801937735, T1j, T1g); T1f = FNMS(KP900968867, T1e, T19); cr[WS(rs, 4)] = FMS(KP974927912, T1k, T1f); ci[WS(rs, 3)] = FMA(KP974927912, T1k, T1f); } { E T15, T18, T14, T17, T16; T14 = FNMS(KP356895867, TE, Tr); T15 = FNMS(KP692021471, T14, Te); T17 = FNMS(KP554958132, TR, TM); T18 = FNMS(KP801937735, T17, TW); T16 = FNMS(KP900968867, T15, T1); ci[WS(rs, 2)] = FNMS(KP974927912, T18, T16); cr[WS(rs, 3)] = FMA(KP974927912, T18, T16); } { E T10, T13, TZ, T12, T11; TZ = FNMS(KP356895867, Te, TE); T10 = FNMS(KP692021471, TZ, Tr); T12 = FMA(KP554958132, TM, TW); T13 = FNMS(KP801937735, T12, TR); T11 = FNMS(KP900968867, T10, T1); ci[WS(rs, 1)] = FNMS(KP974927912, T13, T11); cr[WS(rs, 2)] = FMA(KP974927912, T13, T11); } } } } static const tw_instr twinstr[] = { { TW_FULL, 1, 7 }, { TW_NEXT, 1, 0 } }; static const hc2hc_desc desc = { 7, "hf_7", twinstr, &GENUS, { 18, 12, 54, 0 } }; void X(codelet_hf_7) (planner *p) { X(khc2hc_register) (p, hf_7, &desc); } #else /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 7 -dit -name hf_7 -include rdft/scalar/hf.h */ /* * This function contains 72 FP additions, 60 FP multiplications, * (or, 36 additions, 24 multiplications, 36 fused multiply/add), * 29 stack variables, 6 constants, and 28 memory accesses */ #include "rdft/scalar/hf.h" static void hf_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP222520933, +0.222520933956314404288902564496794759466355569); DK(KP900968867, +0.900968867902419126236102319507445051165919162); DK(KP623489801, +0.623489801858733530525004884004239810632274731); DK(KP433883739, +0.433883739117558120475768332848358754609990728); DK(KP974927912, +0.974927912181823607018131682993931217232785801); DK(KP781831482, +0.781831482468029808708444526674057750232334519); { INT m; for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { E T1, TT, Tc, TV, TC, TO, Tn, TS, TI, TP, Ty, TU, TF, TQ; T1 = cr[0]; TT = ci[0]; { E T6, TA, Tb, TB; { E T3, T5, T2, T4; T3 = cr[WS(rs, 1)]; T5 = ci[WS(rs, 1)]; T2 = W[0]; T4 = W[1]; T6 = FMA(T2, T3, T4 * T5); TA = FNMS(T4, T3, T2 * T5); } { E T8, Ta, T7, T9; T8 = cr[WS(rs, 6)]; Ta = ci[WS(rs, 6)]; T7 = W[10]; T9 = W[11]; Tb = FMA(T7, T8, T9 * Ta); TB = FNMS(T9, T8, T7 * Ta); } Tc = T6 + Tb; TV = TA + TB; TC = TA - TB; TO = Tb - T6; } { E Th, TG, Tm, TH; { E Te, Tg, Td, Tf; Te = cr[WS(rs, 2)]; Tg = ci[WS(rs, 2)]; Td = W[2]; Tf = W[3]; Th = FMA(Td, Te, Tf * Tg); TG = FNMS(Tf, Te, Td * Tg); } { E Tj, Tl, Ti, Tk; Tj = cr[WS(rs, 5)]; Tl = ci[WS(rs, 5)]; Ti = W[8]; Tk = W[9]; Tm = FMA(Ti, Tj, Tk * Tl); TH = FNMS(Tk, Tj, Ti * Tl); } Tn = Th + Tm; TS = TG + TH; TI = TG - TH; TP = Th - Tm; } { E Ts, TD, Tx, TE; { E Tp, Tr, To, Tq; Tp = cr[WS(rs, 3)]; Tr = ci[WS(rs, 3)]; To = W[4]; Tq = W[5]; Ts = FMA(To, Tp, Tq * Tr); TD = FNMS(Tq, Tp, To * Tr); } { E Tu, Tw, Tt, Tv; Tu = cr[WS(rs, 4)]; Tw = ci[WS(rs, 4)]; Tt = W[6]; Tv = W[7]; Tx = FMA(Tt, Tu, Tv * Tw); TE = FNMS(Tv, Tu, Tt * Tw); } Ty = Ts + Tx; TU = TD + TE; TF = TD - TE; TQ = Tx - Ts; } { E TL, TK, TZ, T10; cr[0] = T1 + Tc + Tn + Ty; TL = FMA(KP781831482, TC, KP974927912 * TI) + (KP433883739 * TF); TK = FMA(KP623489801, Tc, T1) + FNMA(KP900968867, Ty, KP222520933 * Tn); ci[0] = TK - TL; cr[WS(rs, 1)] = TK + TL; ci[WS(rs, 6)] = TV + TS + TU + TT; TZ = FMA(KP781831482, TO, KP433883739 * TQ) - (KP974927912 * TP); T10 = FMA(KP623489801, TV, TT) + FNMA(KP900968867, TU, KP222520933 * TS); cr[WS(rs, 6)] = TZ - T10; ci[WS(rs, 5)] = TZ + T10; } { E TX, TY, TR, TW; TX = FMA(KP974927912, TO, KP433883739 * TP) - (KP781831482 * TQ); TY = FMA(KP623489801, TU, TT) + FNMA(KP900968867, TS, KP222520933 * TV); cr[WS(rs, 5)] = TX - TY; ci[WS(rs, 4)] = TX + TY; TR = FMA(KP433883739, TO, KP781831482 * TP) + (KP974927912 * TQ); TW = FMA(KP623489801, TS, TT) + FNMA(KP222520933, TU, KP900968867 * TV); cr[WS(rs, 4)] = TR - TW; ci[WS(rs, 3)] = TR + TW; } { E TN, TM, TJ, Tz; TN = FMA(KP433883739, TC, KP974927912 * TF) - (KP781831482 * TI); TM = FMA(KP623489801, Tn, T1) + FNMA(KP222520933, Ty, KP900968867 * Tc); ci[WS(rs, 2)] = TM - TN; cr[WS(rs, 3)] = TM + TN; TJ = FNMS(KP781831482, TF, KP974927912 * TC) - (KP433883739 * TI); Tz = FMA(KP623489801, Ty, T1) + FNMA(KP900968867, Tn, KP222520933 * Tc); ci[WS(rs, 1)] = Tz - TJ; cr[WS(rs, 2)] = Tz + TJ; } } } } static const tw_instr twinstr[] = { { TW_FULL, 1, 7 }, { TW_NEXT, 1, 0 } }; static const hc2hc_desc desc = { 7, "hf_7", twinstr, &GENUS, { 36, 24, 36, 0 } }; void X(codelet_hf_7) (planner *p) { X(khc2hc_register) (p, hf_7, &desc); } #endif