furnace/extern/fftw/rdft/scalar/r2cb/r2cb_15.c

294 lines
9.7 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:48 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cb_15 -include rdft/scalar/r2cb.h */
/*
* This function contains 64 FP additions, 43 FP multiplications,
* (or, 21 additions, 0 multiplications, 43 fused multiply/add),
* 46 stack variables, 9 constants, and 30 memory accesses
*/
#include "rdft/scalar/r2cb.h"
static void r2cb_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) {
E T3, Tt, Th, TC, TY, TZ, TD, TH, TI, Tm, Tu, Tr, Tv, T8, Td;
E Te;
{
E Tg, T1, T2, Tf;
Tg = Ci[WS(csi, 5)];
T1 = Cr[0];
T2 = Cr[WS(csr, 5)];
Tf = T1 - T2;
T3 = FMA(KP2_000000000, T2, T1);
Tt = FNMS(KP1_732050807, Tg, Tf);
Th = FMA(KP1_732050807, Tg, Tf);
}
{
E T4, TA, T9, TF, T5, T6, T7, Ta, Tb, Tc, Tq, TG, Tl, TB, Ti;
E Tn;
T4 = Cr[WS(csr, 3)];
TA = Ci[WS(csi, 3)];
T9 = Cr[WS(csr, 6)];
TF = Ci[WS(csi, 6)];
T5 = Cr[WS(csr, 7)];
T6 = Cr[WS(csr, 2)];
T7 = T5 + T6;
Ta = Cr[WS(csr, 4)];
Tb = Cr[WS(csr, 1)];
Tc = Ta + Tb;
{
E To, Tp, Tj, Tk;
To = Ci[WS(csi, 4)];
Tp = Ci[WS(csi, 1)];
Tq = To + Tp;
TG = Tp - To;
Tj = Ci[WS(csi, 7)];
Tk = Ci[WS(csi, 2)];
Tl = Tj - Tk;
TB = Tj + Tk;
}
TC = FMA(KP500000000, TB, TA);
TY = TG + TF;
TZ = TA - TB;
TD = T5 - T6;
TH = FNMS(KP500000000, TG, TF);
TI = Ta - Tb;
Ti = FNMS(KP2_000000000, T4, T7);
Tm = FMA(KP1_732050807, Tl, Ti);
Tu = FNMS(KP1_732050807, Tl, Ti);
Tn = FNMS(KP2_000000000, T9, Tc);
Tr = FMA(KP1_732050807, Tq, Tn);
Tv = FNMS(KP1_732050807, Tq, Tn);
T8 = T4 + T7;
Td = T9 + Tc;
Te = T8 + Td;
}
R0[0] = FMA(KP2_000000000, Te, T3);
{
E T10, T12, TX, T11, TV, TW;
T10 = FNMS(KP618033988, TZ, TY);
T12 = FMA(KP618033988, TY, TZ);
TV = FNMS(KP500000000, Te, T3);
TW = T8 - Td;
TX = FNMS(KP1_118033988, TW, TV);
T11 = FMA(KP1_118033988, TW, TV);
R1[WS(rs, 1)] = FNMS(KP1_902113032, T10, TX);
R1[WS(rs, 4)] = FMA(KP1_902113032, T12, T11);
R0[WS(rs, 6)] = FMA(KP1_902113032, T10, TX);
R0[WS(rs, 3)] = FNMS(KP1_902113032, T12, T11);
}
{
E TO, Ts, TN, TS, TU, TQ, TR, TT, TP;
TO = Tr - Tm;
Ts = Tm + Tr;
TN = FMA(KP250000000, Ts, Th);
TQ = FNMS(KP866025403, TI, TH);
TR = FNMS(KP866025403, TD, TC);
TS = FNMS(KP618033988, TR, TQ);
TU = FMA(KP618033988, TQ, TR);
R1[WS(rs, 2)] = Th - Ts;
TT = FMA(KP559016994, TO, TN);
R1[WS(rs, 5)] = FNMS(KP1_902113032, TU, TT);
R0[WS(rs, 7)] = FMA(KP1_902113032, TU, TT);
TP = FNMS(KP559016994, TO, TN);
R0[WS(rs, 4)] = FNMS(KP1_902113032, TS, TP);
R0[WS(rs, 1)] = FMA(KP1_902113032, TS, TP);
}
{
E Ty, Tw, Tx, TK, TM, TE, TJ, TL, Tz;
Ty = Tv - Tu;
Tw = Tu + Tv;
Tx = FMA(KP250000000, Tw, Tt);
TE = FMA(KP866025403, TD, TC);
TJ = FMA(KP866025403, TI, TH);
TK = FMA(KP618033988, TJ, TE);
TM = FNMS(KP618033988, TE, TJ);
R0[WS(rs, 5)] = Tt - Tw;
TL = FNMS(KP559016994, Ty, Tx);
R1[WS(rs, 6)] = FNMS(KP1_902113032, TM, TL);
R1[WS(rs, 3)] = FMA(KP1_902113032, TM, TL);
Tz = FMA(KP559016994, Ty, Tx);
R1[0] = FNMS(KP1_902113032, TK, Tz);
R0[WS(rs, 2)] = FMA(KP1_902113032, TK, Tz);
}
}
}
}
static const kr2c_desc desc = { 15, "r2cb_15", { 21, 0, 43, 0 }, &GENUS };
void X(codelet_r2cb_15) (planner *p) { X(kr2c_register) (p, r2cb_15, &desc);
}
#else
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cb_15 -include rdft/scalar/r2cb.h */
/*
* This function contains 64 FP additions, 31 FP multiplications,
* (or, 47 additions, 14 multiplications, 17 fused multiply/add),
* 44 stack variables, 7 constants, and 30 memory accesses
*/
#include "rdft/scalar/r2cb.h"
static void r2cb_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) {
E T3, Tu, Ti, TB, TZ, T10, TE, TG, TJ, Tn, Tv, Ts, Tw, T8, Td;
E Te;
{
E Th, T1, T2, Tf, Tg;
Tg = Ci[WS(csi, 5)];
Th = KP1_732050807 * Tg;
T1 = Cr[0];
T2 = Cr[WS(csr, 5)];
Tf = T1 - T2;
T3 = FMA(KP2_000000000, T2, T1);
Tu = Tf - Th;
Ti = Tf + Th;
}
{
E T4, TD, T9, TI, T5, T6, T7, Ta, Tb, Tc, Tr, TH, Tm, TC, Tj;
E To;
T4 = Cr[WS(csr, 3)];
TD = Ci[WS(csi, 3)];
T9 = Cr[WS(csr, 6)];
TI = Ci[WS(csi, 6)];
T5 = Cr[WS(csr, 7)];
T6 = Cr[WS(csr, 2)];
T7 = T5 + T6;
Ta = Cr[WS(csr, 4)];
Tb = Cr[WS(csr, 1)];
Tc = Ta + Tb;
{
E Tp, Tq, Tk, Tl;
Tp = Ci[WS(csi, 4)];
Tq = Ci[WS(csi, 1)];
Tr = KP866025403 * (Tp + Tq);
TH = Tp - Tq;
Tk = Ci[WS(csi, 7)];
Tl = Ci[WS(csi, 2)];
Tm = KP866025403 * (Tk - Tl);
TC = Tk + Tl;
}
TB = KP866025403 * (T5 - T6);
TZ = TD - TC;
T10 = TI - TH;
TE = FMA(KP500000000, TC, TD);
TG = KP866025403 * (Ta - Tb);
TJ = FMA(KP500000000, TH, TI);
Tj = FNMS(KP500000000, T7, T4);
Tn = Tj - Tm;
Tv = Tj + Tm;
To = FNMS(KP500000000, Tc, T9);
Ts = To - Tr;
Tw = To + Tr;
T8 = T4 + T7;
Td = T9 + Tc;
Te = T8 + Td;
}
R0[0] = FMA(KP2_000000000, Te, T3);
{
E T11, T13, TY, T12, TW, TX;
T11 = FNMS(KP1_902113032, T10, KP1_175570504 * TZ);
T13 = FMA(KP1_902113032, TZ, KP1_175570504 * T10);
TW = FNMS(KP500000000, Te, T3);
TX = KP1_118033988 * (T8 - Td);
TY = TW - TX;
T12 = TX + TW;
R0[WS(rs, 6)] = TY - T11;
R1[WS(rs, 4)] = T12 + T13;
R1[WS(rs, 1)] = TY + T11;
R0[WS(rs, 3)] = T12 - T13;
}
{
E TP, Tt, TO, TT, TV, TR, TS, TU, TQ;
TP = KP1_118033988 * (Tn - Ts);
Tt = Tn + Ts;
TO = FNMS(KP500000000, Tt, Ti);
TR = TE - TB;
TS = TJ - TG;
TT = FNMS(KP1_902113032, TS, KP1_175570504 * TR);
TV = FMA(KP1_902113032, TR, KP1_175570504 * TS);
R1[WS(rs, 2)] = FMA(KP2_000000000, Tt, Ti);
TU = TP + TO;
R1[WS(rs, 5)] = TU - TV;
R0[WS(rs, 7)] = TU + TV;
TQ = TO - TP;
R0[WS(rs, 1)] = TQ - TT;
R0[WS(rs, 4)] = TQ + TT;
}
{
E Tz, Tx, Ty, TL, TN, TF, TK, TM, TA;
Tz = KP1_118033988 * (Tv - Tw);
Tx = Tv + Tw;
Ty = FNMS(KP500000000, Tx, Tu);
TF = TB + TE;
TK = TG + TJ;
TL = FNMS(KP1_902113032, TK, KP1_175570504 * TF);
TN = FMA(KP1_902113032, TF, KP1_175570504 * TK);
R0[WS(rs, 5)] = FMA(KP2_000000000, Tx, Tu);
TM = Tz + Ty;
R1[0] = TM - TN;
R0[WS(rs, 2)] = TM + TN;
TA = Ty - Tz;
R1[WS(rs, 3)] = TA - TL;
R1[WS(rs, 6)] = TA + TL;
}
}
}
}
static const kr2c_desc desc = { 15, "r2cb_15", { 47, 14, 17, 0 }, &GENUS };
void X(codelet_r2cb_15) (planner *p) { X(kr2c_register) (p, r2cb_15, &desc);
}
#endif