/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:46:48 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cb_15 -include rdft/scalar/r2cb.h */ /* * This function contains 64 FP additions, 43 FP multiplications, * (or, 21 additions, 0 multiplications, 43 fused multiply/add), * 46 stack variables, 9 constants, and 30 memory accesses */ #include "rdft/scalar/r2cb.h" static void r2cb_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); DK(KP618033988, +0.618033988749894848204586834365638117720309180); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { E T3, Tt, Th, TC, TY, TZ, TD, TH, TI, Tm, Tu, Tr, Tv, T8, Td; E Te; { E Tg, T1, T2, Tf; Tg = Ci[WS(csi, 5)]; T1 = Cr[0]; T2 = Cr[WS(csr, 5)]; Tf = T1 - T2; T3 = FMA(KP2_000000000, T2, T1); Tt = FNMS(KP1_732050807, Tg, Tf); Th = FMA(KP1_732050807, Tg, Tf); } { E T4, TA, T9, TF, T5, T6, T7, Ta, Tb, Tc, Tq, TG, Tl, TB, Ti; E Tn; T4 = Cr[WS(csr, 3)]; TA = Ci[WS(csi, 3)]; T9 = Cr[WS(csr, 6)]; TF = Ci[WS(csi, 6)]; T5 = Cr[WS(csr, 7)]; T6 = Cr[WS(csr, 2)]; T7 = T5 + T6; Ta = Cr[WS(csr, 4)]; Tb = Cr[WS(csr, 1)]; Tc = Ta + Tb; { E To, Tp, Tj, Tk; To = Ci[WS(csi, 4)]; Tp = Ci[WS(csi, 1)]; Tq = To + Tp; TG = Tp - To; Tj = Ci[WS(csi, 7)]; Tk = Ci[WS(csi, 2)]; Tl = Tj - Tk; TB = Tj + Tk; } TC = FMA(KP500000000, TB, TA); TY = TG + TF; TZ = TA - TB; TD = T5 - T6; TH = FNMS(KP500000000, TG, TF); TI = Ta - Tb; Ti = FNMS(KP2_000000000, T4, T7); Tm = FMA(KP1_732050807, Tl, Ti); Tu = FNMS(KP1_732050807, Tl, Ti); Tn = FNMS(KP2_000000000, T9, Tc); Tr = FMA(KP1_732050807, Tq, Tn); Tv = FNMS(KP1_732050807, Tq, Tn); T8 = T4 + T7; Td = T9 + Tc; Te = T8 + Td; } R0[0] = FMA(KP2_000000000, Te, T3); { E T10, T12, TX, T11, TV, TW; T10 = FNMS(KP618033988, TZ, TY); T12 = FMA(KP618033988, TY, TZ); TV = FNMS(KP500000000, Te, T3); TW = T8 - Td; TX = FNMS(KP1_118033988, TW, TV); T11 = FMA(KP1_118033988, TW, TV); R1[WS(rs, 1)] = FNMS(KP1_902113032, T10, TX); R1[WS(rs, 4)] = FMA(KP1_902113032, T12, T11); R0[WS(rs, 6)] = FMA(KP1_902113032, T10, TX); R0[WS(rs, 3)] = FNMS(KP1_902113032, T12, T11); } { E TO, Ts, TN, TS, TU, TQ, TR, TT, TP; TO = Tr - Tm; Ts = Tm + Tr; TN = FMA(KP250000000, Ts, Th); TQ = FNMS(KP866025403, TI, TH); TR = FNMS(KP866025403, TD, TC); TS = FNMS(KP618033988, TR, TQ); TU = FMA(KP618033988, TQ, TR); R1[WS(rs, 2)] = Th - Ts; TT = FMA(KP559016994, TO, TN); R1[WS(rs, 5)] = FNMS(KP1_902113032, TU, TT); R0[WS(rs, 7)] = FMA(KP1_902113032, TU, TT); TP = FNMS(KP559016994, TO, TN); R0[WS(rs, 4)] = FNMS(KP1_902113032, TS, TP); R0[WS(rs, 1)] = FMA(KP1_902113032, TS, TP); } { E Ty, Tw, Tx, TK, TM, TE, TJ, TL, Tz; Ty = Tv - Tu; Tw = Tu + Tv; Tx = FMA(KP250000000, Tw, Tt); TE = FMA(KP866025403, TD, TC); TJ = FMA(KP866025403, TI, TH); TK = FMA(KP618033988, TJ, TE); TM = FNMS(KP618033988, TE, TJ); R0[WS(rs, 5)] = Tt - Tw; TL = FNMS(KP559016994, Ty, Tx); R1[WS(rs, 6)] = FNMS(KP1_902113032, TM, TL); R1[WS(rs, 3)] = FMA(KP1_902113032, TM, TL); Tz = FMA(KP559016994, Ty, Tx); R1[0] = FNMS(KP1_902113032, TK, Tz); R0[WS(rs, 2)] = FMA(KP1_902113032, TK, Tz); } } } } static const kr2c_desc desc = { 15, "r2cb_15", { 21, 0, 43, 0 }, &GENUS }; void X(codelet_r2cb_15) (planner *p) { X(kr2c_register) (p, r2cb_15, &desc); } #else /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cb_15 -include rdft/scalar/r2cb.h */ /* * This function contains 64 FP additions, 31 FP multiplications, * (or, 47 additions, 14 multiplications, 17 fused multiply/add), * 44 stack variables, 7 constants, and 30 memory accesses */ #include "rdft/scalar/r2cb.h" static void r2cb_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); DK(KP1_175570504, +1.175570504584946258337411909278145537195304875); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { E T3, Tu, Ti, TB, TZ, T10, TE, TG, TJ, Tn, Tv, Ts, Tw, T8, Td; E Te; { E Th, T1, T2, Tf, Tg; Tg = Ci[WS(csi, 5)]; Th = KP1_732050807 * Tg; T1 = Cr[0]; T2 = Cr[WS(csr, 5)]; Tf = T1 - T2; T3 = FMA(KP2_000000000, T2, T1); Tu = Tf - Th; Ti = Tf + Th; } { E T4, TD, T9, TI, T5, T6, T7, Ta, Tb, Tc, Tr, TH, Tm, TC, Tj; E To; T4 = Cr[WS(csr, 3)]; TD = Ci[WS(csi, 3)]; T9 = Cr[WS(csr, 6)]; TI = Ci[WS(csi, 6)]; T5 = Cr[WS(csr, 7)]; T6 = Cr[WS(csr, 2)]; T7 = T5 + T6; Ta = Cr[WS(csr, 4)]; Tb = Cr[WS(csr, 1)]; Tc = Ta + Tb; { E Tp, Tq, Tk, Tl; Tp = Ci[WS(csi, 4)]; Tq = Ci[WS(csi, 1)]; Tr = KP866025403 * (Tp + Tq); TH = Tp - Tq; Tk = Ci[WS(csi, 7)]; Tl = Ci[WS(csi, 2)]; Tm = KP866025403 * (Tk - Tl); TC = Tk + Tl; } TB = KP866025403 * (T5 - T6); TZ = TD - TC; T10 = TI - TH; TE = FMA(KP500000000, TC, TD); TG = KP866025403 * (Ta - Tb); TJ = FMA(KP500000000, TH, TI); Tj = FNMS(KP500000000, T7, T4); Tn = Tj - Tm; Tv = Tj + Tm; To = FNMS(KP500000000, Tc, T9); Ts = To - Tr; Tw = To + Tr; T8 = T4 + T7; Td = T9 + Tc; Te = T8 + Td; } R0[0] = FMA(KP2_000000000, Te, T3); { E T11, T13, TY, T12, TW, TX; T11 = FNMS(KP1_902113032, T10, KP1_175570504 * TZ); T13 = FMA(KP1_902113032, TZ, KP1_175570504 * T10); TW = FNMS(KP500000000, Te, T3); TX = KP1_118033988 * (T8 - Td); TY = TW - TX; T12 = TX + TW; R0[WS(rs, 6)] = TY - T11; R1[WS(rs, 4)] = T12 + T13; R1[WS(rs, 1)] = TY + T11; R0[WS(rs, 3)] = T12 - T13; } { E TP, Tt, TO, TT, TV, TR, TS, TU, TQ; TP = KP1_118033988 * (Tn - Ts); Tt = Tn + Ts; TO = FNMS(KP500000000, Tt, Ti); TR = TE - TB; TS = TJ - TG; TT = FNMS(KP1_902113032, TS, KP1_175570504 * TR); TV = FMA(KP1_902113032, TR, KP1_175570504 * TS); R1[WS(rs, 2)] = FMA(KP2_000000000, Tt, Ti); TU = TP + TO; R1[WS(rs, 5)] = TU - TV; R0[WS(rs, 7)] = TU + TV; TQ = TO - TP; R0[WS(rs, 1)] = TQ - TT; R0[WS(rs, 4)] = TQ + TT; } { E Tz, Tx, Ty, TL, TN, TF, TK, TM, TA; Tz = KP1_118033988 * (Tv - Tw); Tx = Tv + Tw; Ty = FNMS(KP500000000, Tx, Tu); TF = TB + TE; TK = TG + TJ; TL = FNMS(KP1_902113032, TK, KP1_175570504 * TF); TN = FMA(KP1_902113032, TF, KP1_175570504 * TK); R0[WS(rs, 5)] = FMA(KP2_000000000, Tx, Tu); TM = Tz + Ty; R1[0] = TM - TN; R0[WS(rs, 2)] = TM + TN; TA = Ty - Tz; R1[WS(rs, 3)] = TA - TL; R1[WS(rs, 6)] = TA + TL; } } } } static const kr2c_desc desc = { 15, "r2cb_15", { 47, 14, 17, 0 }, &GENUS }; void X(codelet_r2cb_15) (planner *p) { X(kr2c_register) (p, r2cb_15, &desc); } #endif