furnace/extern/fftw/rdft/scalar/r2cb/hc2cb_4.c

197 lines
5.2 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:47:07 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 4 -dif -name hc2cb_4 -include rdft/scalar/hc2cb.h */
/*
* This function contains 22 FP additions, 12 FP multiplications,
* (or, 16 additions, 6 multiplications, 6 fused multiply/add),
* 22 stack variables, 0 constants, and 16 memory accesses
*/
#include "rdft/scalar/hc2cb.h"
static void hc2cb_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
{
INT m;
for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) {
E T3, T6, T8, Td, Tx, Tu, Tm, Tg, Tr;
{
E Tb, Tc, Tq, Tk, Te, Tf, Tl, Tp;
{
E T1, T2, T4, T5;
Tb = Ip[0];
Tc = Im[WS(rs, 1)];
Tq = Tb + Tc;
T1 = Rp[0];
T2 = Rm[WS(rs, 1)];
T3 = T1 + T2;
Tk = T1 - T2;
Te = Ip[WS(rs, 1)];
Tf = Im[0];
Tl = Te + Tf;
T4 = Rp[WS(rs, 1)];
T5 = Rm[0];
T6 = T4 + T5;
Tp = T4 - T5;
}
T8 = T3 - T6;
Td = Tb - Tc;
Tx = Tq - Tp;
Tu = Tk + Tl;
Tm = Tk - Tl;
Tg = Te - Tf;
Tr = Tp + Tq;
}
Rp[0] = T3 + T6;
Rm[0] = Td + Tg;
{
E Tn, Ts, Tj, To;
Tj = W[0];
Tn = Tj * Tm;
Ts = Tj * Tr;
To = W[1];
Ip[0] = FNMS(To, Tr, Tn);
Im[0] = FMA(To, Tm, Ts);
}
{
E Tv, Ty, Tt, Tw;
Tt = W[4];
Tv = Tt * Tu;
Ty = Tt * Tx;
Tw = W[5];
Ip[WS(rs, 1)] = FNMS(Tw, Tx, Tv);
Im[WS(rs, 1)] = FMA(Tw, Tu, Ty);
}
{
E Th, Ta, Ti, T7, T9;
Th = Td - Tg;
Ta = W[3];
Ti = Ta * T8;
T7 = W[2];
T9 = T7 * T8;
Rp[WS(rs, 1)] = FNMS(Ta, Th, T9);
Rm[WS(rs, 1)] = FMA(T7, Th, Ti);
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 4 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 4, "hc2cb_4", twinstr, &GENUS, { 16, 6, 6, 0 } };
void X(codelet_hc2cb_4) (planner *p) {
X(khc2c_register) (p, hc2cb_4, &desc, HC2C_VIA_RDFT);
}
#else
/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 4 -dif -name hc2cb_4 -include rdft/scalar/hc2cb.h */
/*
* This function contains 22 FP additions, 12 FP multiplications,
* (or, 16 additions, 6 multiplications, 6 fused multiply/add),
* 13 stack variables, 0 constants, and 16 memory accesses
*/
#include "rdft/scalar/hc2cb.h"
static void hc2cb_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
{
INT m;
for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) {
E T3, Ti, Tc, Tn, T6, Tm, Tf, Tj;
{
E T1, T2, Ta, Tb;
T1 = Rp[0];
T2 = Rm[WS(rs, 1)];
T3 = T1 + T2;
Ti = T1 - T2;
Ta = Ip[0];
Tb = Im[WS(rs, 1)];
Tc = Ta - Tb;
Tn = Ta + Tb;
}
{
E T4, T5, Td, Te;
T4 = Rp[WS(rs, 1)];
T5 = Rm[0];
T6 = T4 + T5;
Tm = T4 - T5;
Td = Ip[WS(rs, 1)];
Te = Im[0];
Tf = Td - Te;
Tj = Td + Te;
}
Rp[0] = T3 + T6;
Rm[0] = Tc + Tf;
{
E T8, Tg, T7, T9;
T8 = T3 - T6;
Tg = Tc - Tf;
T7 = W[2];
T9 = W[3];
Rp[WS(rs, 1)] = FNMS(T9, Tg, T7 * T8);
Rm[WS(rs, 1)] = FMA(T9, T8, T7 * Tg);
}
{
E Tk, To, Th, Tl;
Tk = Ti - Tj;
To = Tm + Tn;
Th = W[0];
Tl = W[1];
Ip[0] = FNMS(Tl, To, Th * Tk);
Im[0] = FMA(Th, To, Tl * Tk);
}
{
E Tq, Ts, Tp, Tr;
Tq = Ti + Tj;
Ts = Tn - Tm;
Tp = W[4];
Tr = W[5];
Ip[WS(rs, 1)] = FNMS(Tr, Ts, Tp * Tq);
Im[WS(rs, 1)] = FMA(Tp, Ts, Tr * Tq);
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 4 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 4, "hc2cb_4", twinstr, &GENUS, { 16, 6, 6, 0 } };
void X(codelet_hc2cb_4) (planner *p) {
X(khc2c_register) (p, hc2cb_4, &desc, HC2C_VIA_RDFT);
}
#endif