/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:47:07 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 4 -dif -name hc2cb_4 -include rdft/scalar/hc2cb.h */ /* * This function contains 22 FP additions, 12 FP multiplications, * (or, 16 additions, 6 multiplications, 6 fused multiply/add), * 22 stack variables, 0 constants, and 16 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cb_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { { INT m; for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) { E T3, T6, T8, Td, Tx, Tu, Tm, Tg, Tr; { E Tb, Tc, Tq, Tk, Te, Tf, Tl, Tp; { E T1, T2, T4, T5; Tb = Ip[0]; Tc = Im[WS(rs, 1)]; Tq = Tb + Tc; T1 = Rp[0]; T2 = Rm[WS(rs, 1)]; T3 = T1 + T2; Tk = T1 - T2; Te = Ip[WS(rs, 1)]; Tf = Im[0]; Tl = Te + Tf; T4 = Rp[WS(rs, 1)]; T5 = Rm[0]; T6 = T4 + T5; Tp = T4 - T5; } T8 = T3 - T6; Td = Tb - Tc; Tx = Tq - Tp; Tu = Tk + Tl; Tm = Tk - Tl; Tg = Te - Tf; Tr = Tp + Tq; } Rp[0] = T3 + T6; Rm[0] = Td + Tg; { E Tn, Ts, Tj, To; Tj = W[0]; Tn = Tj * Tm; Ts = Tj * Tr; To = W[1]; Ip[0] = FNMS(To, Tr, Tn); Im[0] = FMA(To, Tm, Ts); } { E Tv, Ty, Tt, Tw; Tt = W[4]; Tv = Tt * Tu; Ty = Tt * Tx; Tw = W[5]; Ip[WS(rs, 1)] = FNMS(Tw, Tx, Tv); Im[WS(rs, 1)] = FMA(Tw, Tu, Ty); } { E Th, Ta, Ti, T7, T9; Th = Td - Tg; Ta = W[3]; Ti = Ta * T8; T7 = W[2]; T9 = T7 * T8; Rp[WS(rs, 1)] = FNMS(Ta, Th, T9); Rm[WS(rs, 1)] = FMA(T7, Th, Ti); } } } } static const tw_instr twinstr[] = { { TW_FULL, 1, 4 }, { TW_NEXT, 1, 0 } }; static const hc2c_desc desc = { 4, "hc2cb_4", twinstr, &GENUS, { 16, 6, 6, 0 } }; void X(codelet_hc2cb_4) (planner *p) { X(khc2c_register) (p, hc2cb_4, &desc, HC2C_VIA_RDFT); } #else /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 4 -dif -name hc2cb_4 -include rdft/scalar/hc2cb.h */ /* * This function contains 22 FP additions, 12 FP multiplications, * (or, 16 additions, 6 multiplications, 6 fused multiply/add), * 13 stack variables, 0 constants, and 16 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cb_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { { INT m; for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) { E T3, Ti, Tc, Tn, T6, Tm, Tf, Tj; { E T1, T2, Ta, Tb; T1 = Rp[0]; T2 = Rm[WS(rs, 1)]; T3 = T1 + T2; Ti = T1 - T2; Ta = Ip[0]; Tb = Im[WS(rs, 1)]; Tc = Ta - Tb; Tn = Ta + Tb; } { E T4, T5, Td, Te; T4 = Rp[WS(rs, 1)]; T5 = Rm[0]; T6 = T4 + T5; Tm = T4 - T5; Td = Ip[WS(rs, 1)]; Te = Im[0]; Tf = Td - Te; Tj = Td + Te; } Rp[0] = T3 + T6; Rm[0] = Tc + Tf; { E T8, Tg, T7, T9; T8 = T3 - T6; Tg = Tc - Tf; T7 = W[2]; T9 = W[3]; Rp[WS(rs, 1)] = FNMS(T9, Tg, T7 * T8); Rm[WS(rs, 1)] = FMA(T9, T8, T7 * Tg); } { E Tk, To, Th, Tl; Tk = Ti - Tj; To = Tm + Tn; Th = W[0]; Tl = W[1]; Ip[0] = FNMS(Tl, To, Th * Tk); Im[0] = FMA(Th, To, Tl * Tk); } { E Tq, Ts, Tp, Tr; Tq = Ti + Tj; Ts = Tn - Tm; Tp = W[4]; Tr = W[5]; Ip[WS(rs, 1)] = FNMS(Tr, Ts, Tp * Tq); Im[WS(rs, 1)] = FMA(Tp, Ts, Tr * Tq); } } } } static const tw_instr twinstr[] = { { TW_FULL, 1, 4 }, { TW_NEXT, 1, 0 } }; static const hc2c_desc desc = { 4, "hc2cb_4", twinstr, &GENUS, { 16, 6, 6, 0 } }; void X(codelet_hc2cb_4) (planner *p) { X(khc2c_register) (p, hc2cb_4, &desc, HC2C_VIA_RDFT); } #endif