mirror of
https://github.com/Xaymar/obs-StreamFX
synced 2024-12-28 02:21:25 +00:00
d2a543f118
- Remove float_t and double_t usage, as they aren't related to sized types. - Remove unused aligned types, their usage has been replaced quite a while ago. - Update the templates for pow and is_power_of_two.
272 lines
7.4 KiB
C++
272 lines
7.4 KiB
C++
// AUTOGENERATED COPYRIGHT HEADER START
|
|
// Copyright (C) 2020-2023 Michael Fabian 'Xaymar' Dirks <info@xaymar.com>
|
|
// Copyright (C) 2022 lainon <GermanAizek@yandex.ru>
|
|
// AUTOGENERATED COPYRIGHT HEADER END
|
|
|
|
#pragma once
|
|
#include "warning-disable.hpp"
|
|
#include <bitset>
|
|
#include <cinttypes>
|
|
#include <cstddef>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
#include "warning-enable.hpp"
|
|
|
|
extern "C" {
|
|
#include "warning-disable.hpp"
|
|
#include <obs.h>
|
|
#include <graphics/vec2.h>
|
|
#include <graphics/vec3.h>
|
|
#include <graphics/vec4.h>
|
|
#include "warning-enable.hpp"
|
|
}
|
|
|
|
// Constants
|
|
#define S_PI 3.1415926535897932384626433832795 // PI = pi
|
|
#define S_PI2 6.283185307179586476925286766559 // 2PI = 2 * pi
|
|
#define S_PI2_SQROOT 2.506628274631000502415765284811 // sqrt(2 * pi)
|
|
#define S_RAD 57.295779513082320876798154814105 // 180/pi
|
|
#define S_DEG 0.01745329251994329576923690768489 // pi/180
|
|
#define D_DEG_TO_RAD(x) (x * S_DEG)
|
|
#define D_RAD_TO_DEG(x) (x * S_RAD)
|
|
|
|
#define D_STR(s) #s
|
|
#define D_VSTR(s) D_STR(s)
|
|
|
|
namespace streamfx::util {
|
|
bool inline are_property_groups_broken()
|
|
{
|
|
return obs_get_version() < MAKE_SEMANTIC_VERSION(24, 0, 0);
|
|
}
|
|
|
|
obs_property_t* obs_properties_add_tristate(obs_properties_t* props, const char* name, const char* desc);
|
|
|
|
inline bool is_tristate_enabled(int64_t tristate)
|
|
{
|
|
return tristate == 1;
|
|
}
|
|
|
|
inline bool is_tristate_disabled(int64_t tristate)
|
|
{
|
|
return tristate == 0;
|
|
}
|
|
|
|
inline bool is_tristate_default(int64_t tristate)
|
|
{
|
|
return tristate == -1;
|
|
}
|
|
|
|
std::pair<int64_t, int64_t> size_from_string(std::string_view text, bool allowSquare = true);
|
|
|
|
namespace math {
|
|
/** Integer exponentiation by squaring.
|
|
* Complexity: O(log(exp)
|
|
* Has fall-backs to the normal methods for non-integer types.
|
|
*/
|
|
template<typename T>
|
|
inline T pow(T base, T exp)
|
|
{
|
|
T res = 1;
|
|
while (exp) {
|
|
if (exp & 1)
|
|
res *= base;
|
|
exp >>= 1;
|
|
base *= base;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
template<>
|
|
inline float pow(float base, float exp)
|
|
{
|
|
return ::powf(base, exp);
|
|
}
|
|
|
|
template<>
|
|
inline double pow(double base, double exp)
|
|
{
|
|
return ::pow(base, exp);
|
|
}
|
|
|
|
template<>
|
|
inline long double pow(long double base, long double exp)
|
|
{
|
|
return ::powl(base, exp);
|
|
}
|
|
|
|
/** Fast PoT testing
|
|
*
|
|
* This was tested and verified to be the fastest implementation on
|
|
* Intel and AMD x86 CPUs, in both 32bit and 64bit modes. It is
|
|
* possible to make it even faster with a bit of SIMD magic (see
|
|
* json-simd), but it would no longer be generic - and not worth it.
|
|
*
|
|
* Ranking: popcnt < log10, loop < bitscan < pow
|
|
* - log10 version is useful for floating point.
|
|
* - popcnt and loop are fixed point and integers.
|
|
* - Pretty clear solution here.
|
|
*
|
|
*/
|
|
template<typename T>
|
|
inline bool is_power_of_two(T v)
|
|
{
|
|
static_assert(std::is_integral<T>::value, "Input must be an integral type.");
|
|
|
|
#if 1 // Optimizes to popcount if available.
|
|
return std::bitset<sizeof(T) * 8>(v).count() == 0;
|
|
|
|
#elif 0 // Loop Variant 1, uses bit shifts.
|
|
bool bit = false;
|
|
for (std::size_t index = 0; index < (sizeof(T) * 8) || (v == 0); index++) {
|
|
if (bit && (v & 1))
|
|
return false;
|
|
bit = (v & 1);
|
|
v >>= 1;
|
|
}
|
|
return true;
|
|
#elif 0 // Loop Variant 2, optimized by compiler to the above.
|
|
bool have_bit = false;
|
|
for (std::size_t index = 0; index < (sizeof(T) * 8); index++) {
|
|
bool cur = (v & (static_cast<T>(1ull) << index)) != 0;
|
|
if (cur) {
|
|
if (have_bit)
|
|
return false;
|
|
have_bit = true;
|
|
}
|
|
}
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool is_power_of_two(float v)
|
|
{
|
|
return T(1ull << uint64_t(floor(log10(v) / log10(2.0f)))) == v;
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool is_power_of_two(double v)
|
|
{
|
|
return T(1ull << uint64_t(floor(log10(v) / log10(2.0)))) == v;
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool is_power_of_two(long double v)
|
|
{
|
|
return T(1ull << uint64_t(floor(log10(v) / log10(2.0l)))) == v;
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool is_power_of_two_loop(T v)
|
|
{
|
|
return is_power_of_two<T>(v);
|
|
}
|
|
|
|
/** Retrieves the lower bound on the exponent for a texture that would fit the given size.
|
|
*
|
|
*/
|
|
template<typename T>
|
|
inline uint64_t get_power_of_two_exponent_floor(T v)
|
|
{
|
|
return uint64_t(floor(log10(T(v)) / log10(2.0l)));
|
|
}
|
|
|
|
/** Retrieves the upper bound on the exponent for a texture that would fit the given size.
|
|
*
|
|
*/
|
|
template<typename T>
|
|
inline uint64_t get_power_of_two_exponent_ceil(T v)
|
|
{
|
|
return uint64_t(ceil(log10(T(v)) / log10(2.0l)));
|
|
}
|
|
|
|
template<typename T, typename C>
|
|
inline bool is_close_epsilon(T target, C value)
|
|
{
|
|
return (target > (value - std::numeric_limits<T>::epsilon())) && (target < (value + std::numeric_limits<T>::epsilon()));
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool is_close(T target, T value, T epsilon)
|
|
{
|
|
return (target > (value - epsilon)) && (target < (value + epsilon));
|
|
}
|
|
|
|
template<typename T>
|
|
inline std::vector<T> pascal_triangle(size_t n)
|
|
{
|
|
std::vector<T> line;
|
|
line.push_back(1);
|
|
for (uint64_t k = 0; k < n; k++) {
|
|
T v = static_cast<T>(line.at(k) * static_cast<double_t>(n - k) / static_cast<double_t>(k + 1));
|
|
line.push_back(v);
|
|
}
|
|
return line;
|
|
}
|
|
|
|
template<typename T>
|
|
inline T gaussian(T x, T o /*, T u = 0*/)
|
|
{
|
|
// u/µ can be simulated by subtracting that value from x.
|
|
//static const double_t pi = 3.1415926535897932384626433832795;
|
|
//static const double_t two_pi = pi * 2.;
|
|
static const double_t two_pi_sqroot = 2.506628274631000502415765284811; //sqrt(two_pi);
|
|
|
|
if (is_close_epsilon<double_t>(0, o)) {
|
|
return T(std::numeric_limits<double_t>::infinity());
|
|
}
|
|
|
|
// g(x) = (1 / o√(2Π)) * e(-(1/2) * ((x-u)/o)²)
|
|
double_t left_e = 1. / (o * two_pi_sqroot);
|
|
double_t mid_right_e = ((x /* - u*/) / o);
|
|
double_t right_e = -0.5 * mid_right_e * mid_right_e;
|
|
double final = left_e * exp(right_e);
|
|
|
|
return T(final);
|
|
}
|
|
|
|
template<typename T>
|
|
inline T lerp(T a, T b, double_t v)
|
|
{
|
|
return static_cast<T>((static_cast<double_t>(a) * (1.0 - v)) + (static_cast<double_t>(b) * v));
|
|
}
|
|
|
|
template<typename T>
|
|
class kalman1D {
|
|
T _q_process_noise_covariance;
|
|
T _r_measurement_noise_covariance;
|
|
T _x_value_of_interest;
|
|
T _p_estimation_error_covariance;
|
|
T _k_kalman_gain;
|
|
|
|
public:
|
|
kalman1D() : _q_process_noise_covariance(0), _r_measurement_noise_covariance(0), _x_value_of_interest(0), _p_estimation_error_covariance(0), _k_kalman_gain(0.0) {}
|
|
kalman1D(T pnc, T mnc, T eec, T value) : _q_process_noise_covariance(pnc), _r_measurement_noise_covariance(mnc), _x_value_of_interest(value), _p_estimation_error_covariance(eec), _k_kalman_gain(0.0) {}
|
|
~kalman1D() = default;
|
|
|
|
T filter(T measurement)
|
|
{
|
|
_p_estimation_error_covariance += _q_process_noise_covariance;
|
|
_k_kalman_gain = _p_estimation_error_covariance / (_p_estimation_error_covariance + _r_measurement_noise_covariance);
|
|
_x_value_of_interest += _k_kalman_gain * (measurement - _x_value_of_interest);
|
|
_p_estimation_error_covariance = (1 - _k_kalman_gain) * _p_estimation_error_covariance;
|
|
return _x_value_of_interest;
|
|
}
|
|
|
|
T get()
|
|
{
|
|
return _x_value_of_interest;
|
|
}
|
|
};
|
|
} // namespace math
|
|
|
|
namespace memory {
|
|
inline std::size_t aligned_offset(std::size_t align, std::size_t pos)
|
|
{
|
|
return ((pos / align) + 1) * align;
|
|
}
|
|
void* malloc_aligned(std::size_t align, std::size_t size);
|
|
void free_aligned(void* mem);
|
|
} // namespace memory
|
|
} // namespace streamfx::util
|