// AUTOGENERATED COPYRIGHT HEADER START // Copyright (C) 2020-2023 Michael Fabian 'Xaymar' Dirks // Copyright (C) 2022 lainon // AUTOGENERATED COPYRIGHT HEADER END #pragma once #include "warning-disable.hpp" #include #include #include #include #include #include #include "warning-enable.hpp" extern "C" { #include "warning-disable.hpp" #include #include #include #include #include "warning-enable.hpp" } // Constants #define S_PI 3.1415926535897932384626433832795 // PI = pi #define S_PI2 6.283185307179586476925286766559 // 2PI = 2 * pi #define S_PI2_SQROOT 2.506628274631000502415765284811 // sqrt(2 * pi) #define S_RAD 57.295779513082320876798154814105 // 180/pi #define S_DEG 0.01745329251994329576923690768489 // pi/180 #define D_DEG_TO_RAD(x) (x * S_DEG) #define D_RAD_TO_DEG(x) (x * S_RAD) #define D_STR(s) #s #define D_VSTR(s) D_STR(s) namespace streamfx::util { bool inline are_property_groups_broken() { return obs_get_version() < MAKE_SEMANTIC_VERSION(24, 0, 0); } obs_property_t* obs_properties_add_tristate(obs_properties_t* props, const char* name, const char* desc); inline bool is_tristate_enabled(int64_t tristate) { return tristate == 1; } inline bool is_tristate_disabled(int64_t tristate) { return tristate == 0; } inline bool is_tristate_default(int64_t tristate) { return tristate == -1; } std::pair size_from_string(std::string_view text, bool allowSquare = true); namespace math { /** Integer exponentiation by squaring. * Complexity: O(log(exp) * Has fall-backs to the normal methods for non-integer types. */ template inline T pow(T base, T exp) { T res = 1; while (exp) { if (exp & 1) res *= base; exp >>= 1; base *= base; } return res; } template<> inline float pow(float base, float exp) { return ::powf(base, exp); } template<> inline double pow(double base, double exp) { return ::pow(base, exp); } template<> inline long double pow(long double base, long double exp) { return ::powl(base, exp); } /** Fast PoT testing * * This was tested and verified to be the fastest implementation on * Intel and AMD x86 CPUs, in both 32bit and 64bit modes. It is * possible to make it even faster with a bit of SIMD magic (see * json-simd), but it would no longer be generic - and not worth it. * * Ranking: popcnt < log10, loop < bitscan < pow * - log10 version is useful for floating point. * - popcnt and loop are fixed point and integers. * - Pretty clear solution here. * */ template inline bool is_power_of_two(T v) { static_assert(std::is_integral::value, "Input must be an integral type."); #if 1 // Optimizes to popcount if available. return std::bitset(v).count() == 0; #elif 0 // Loop Variant 1, uses bit shifts. bool bit = false; for (std::size_t index = 0; index < (sizeof(T) * 8) || (v == 0); index++) { if (bit && (v & 1)) return false; bit = (v & 1); v >>= 1; } return true; #elif 0 // Loop Variant 2, optimized by compiler to the above. bool have_bit = false; for (std::size_t index = 0; index < (sizeof(T) * 8); index++) { bool cur = (v & (static_cast(1ull) << index)) != 0; if (cur) { if (have_bit) return false; have_bit = true; } } return true; #endif } template inline bool is_power_of_two(float v) { return T(1ull << uint64_t(floor(log10(v) / log10(2.0f)))) == v; } template inline bool is_power_of_two(double v) { return T(1ull << uint64_t(floor(log10(v) / log10(2.0)))) == v; } template inline bool is_power_of_two(long double v) { return T(1ull << uint64_t(floor(log10(v) / log10(2.0l)))) == v; } template inline bool is_power_of_two_loop(T v) { return is_power_of_two(v); } /** Retrieves the lower bound on the exponent for a texture that would fit the given size. * */ template inline uint64_t get_power_of_two_exponent_floor(T v) { return uint64_t(floor(log10(T(v)) / log10(2.0l))); } /** Retrieves the upper bound on the exponent for a texture that would fit the given size. * */ template inline uint64_t get_power_of_two_exponent_ceil(T v) { return uint64_t(ceil(log10(T(v)) / log10(2.0l))); } template inline bool is_close_epsilon(T target, C value) { return (target > (value - std::numeric_limits::epsilon())) && (target < (value + std::numeric_limits::epsilon())); } template inline bool is_close(T target, T value, T epsilon) { return (target > (value - epsilon)) && (target < (value + epsilon)); } template inline std::vector pascal_triangle(size_t n) { std::vector line; line.push_back(1); for (uint64_t k = 0; k < n; k++) { T v = static_cast(line.at(k) * static_cast(n - k) / static_cast(k + 1)); line.push_back(v); } return line; } template inline T gaussian(T x, T o /*, T u = 0*/) { // u/µ can be simulated by subtracting that value from x. //static const double_t pi = 3.1415926535897932384626433832795; //static const double_t two_pi = pi * 2.; static const double_t two_pi_sqroot = 2.506628274631000502415765284811; //sqrt(two_pi); if (is_close_epsilon(0, o)) { return T(std::numeric_limits::infinity()); } // g(x) = (1 / o√(2Π)) * e(-(1/2) * ((x-u)/o)²) double_t left_e = 1. / (o * two_pi_sqroot); double_t mid_right_e = ((x /* - u*/) / o); double_t right_e = -0.5 * mid_right_e * mid_right_e; double final = left_e * exp(right_e); return T(final); } template inline T lerp(T a, T b, double_t v) { return static_cast((static_cast(a) * (1.0 - v)) + (static_cast(b) * v)); } template class kalman1D { T _q_process_noise_covariance; T _r_measurement_noise_covariance; T _x_value_of_interest; T _p_estimation_error_covariance; T _k_kalman_gain; public: kalman1D() : _q_process_noise_covariance(0), _r_measurement_noise_covariance(0), _x_value_of_interest(0), _p_estimation_error_covariance(0), _k_kalman_gain(0.0) {} kalman1D(T pnc, T mnc, T eec, T value) : _q_process_noise_covariance(pnc), _r_measurement_noise_covariance(mnc), _x_value_of_interest(value), _p_estimation_error_covariance(eec), _k_kalman_gain(0.0) {} ~kalman1D() = default; T filter(T measurement) { _p_estimation_error_covariance += _q_process_noise_covariance; _k_kalman_gain = _p_estimation_error_covariance / (_p_estimation_error_covariance + _r_measurement_noise_covariance); _x_value_of_interest += _k_kalman_gain * (measurement - _x_value_of_interest); _p_estimation_error_covariance = (1 - _k_kalman_gain) * _p_estimation_error_covariance; return _x_value_of_interest; } T get() { return _x_value_of_interest; } }; } // namespace math namespace memory { inline std::size_t aligned_offset(std::size_t align, std::size_t pos) { return ((pos / align) + 1) * align; } void* malloc_aligned(std::size_t align, std::size_t size); void free_aligned(void* mem); } // namespace memory } // namespace streamfx::util