Through converting the code to a threaded asynchronous approach, the libOBS video renderer no longer has to wait on our tracking code to run, and we can enjoy a little bit of extra calculation time before we actually have to do anything.
However due to the remaining synchronization with the Direct3D11/OpenGL context, it is not entirely safe to spend a full frame tracking as libOBS will then start skipped/dropping frames. Even though the priority of the stream is now increased, this still means that we can't just sit around and have to quickly finish all work.
Related #150
Load additional functions from CUDA and add new enumerations to support them:
* cuDevicePrimaryCtxSetFlags allows us to sched scheduling mode for the GPU.
* cuCtxgetStreamPriorityRange allows us to check which priority levels are supported.
* cuStreamCreateWithPriority allows us to create streams with non-default priority.
The scheduler mode is now set to yield so that other threads can do work when we hit an eventual stalling problem. Streams can also now be created with higher priority and different flags, if necessary. In most cases this should allow CUDA resources to execute even while the GPU is under heavy load.
Previously sources had to manually implement migration code, which resulted in unresolvable regression issues due to the lack of version and commit tagging. With the new migration code, all sources automatically have this version and commit tagging at all times, and as such can now have a temporary regression fixed without the user needing to change any values manually.
As OBS Studio locks some mutexes in a different order depending on what actions are being done, using modified_properties for GPU work causes things to freeze in place. Instead have users manually click the refresh button when they changed files in order to prevent this freeze from happening.
Fixes: #118
With this, GCC 8 and above should now be able to compile the project both in obs-studio and as a standalone install. Some features are currently still not fully supported and require extra work, but the majority of things are supported and work out of the box. Exact feature parity can be looked up here on the wiki: https://github.com/Xaymar/obs-StreamFX/wiki/Platform-Feature-Parity
Related: #119#98#30
This header includes all common data between headers used in the plugin. This should improve cross-platform compiling support whenever possible, as all platform-dependent common includes and defines can be done here.
Ever wished you had a professional camera operator to highlight and follow the action, ensuring the audience never misses a beat? Thanks to NVIDIA, you can now do this at home for free! The new NVIDIA AR SDK unlocks augmented reality features, including motion tracking for faces.
This allows me to provide you with an automated zoom and cropping solution for your video camera to transform your streams into a slick, polished broadcast, where you’ll always be the star of the show. Don’t forget - everything is customizable so the possibilities are endless. You can even recreate that Futurama squinting meme if you wanted to (with some scripting)!
The filter requires compatible Nvidia RTX hardware and the Nvidia AR SDK Runtime to be installed ahead of time. This filter is considered "stable" and shouldn't change much from version to version.
Due to the 'nvcuda' library being part of the driver, it falls in a clause of the GPL which allows us to load and interface with system drivers. Since we can't rely on Nvidias headers here (incompatible license), most of this was pulled from FFmpeg and other things were found out via testing.
'Time.x' gets inaccurate if OBS Studio is running for more than two hours, therefore we have to do something to fix it. By allowing the shader code to control when things loop using 'Time.y' (0..1) and 'Time.z' (the number of times 'Time.y' wrapped back to 0), a much more stable animation can be achieved.
These allow you to apply any kind of filtering to a any source, using just standard HLSL. Just like transitions, one extra parameter is set called 'InputA'.
Fixes#95
With this, the first proper shader effect is now possible. By using the four new automated shader parameters 'InputA', 'InputB', 'TransitionTime' and 'TransitionSize' you can write your own transition in HLSL.
Fixes#96
Due to render logic required for transitions, some of the render logic is split into an additional function called 'prepare_render'. Additionally the storage for some temporary objects has been removed as it these objects usually do not outlive their rendering time anyway.
Related: #96#95#94#5
This fixes#116 which was caused by a refactor in commit efb6b0b9be. This bug was left undiscovered until users started upgrading from the last stable version to the current pre-release.
For an unknown reason, OBS Studio v25.x now causes a freeze to happen at this location. This should hopefully work around that issue by ensuring that we are in a location that does not cause an unusual lock order.