obs/gs/vertexbuffer: Cleanup and add workaround for OBS Studio memory leak

This commit is contained in:
Michael Fabian 'Xaymar' Dirks 2020-07-27 02:19:19 +02:00 committed by Michael Fabian Dirks
parent b57c7975e3
commit bbfacbc30b
2 changed files with 161 additions and 209 deletions

View file

@ -22,120 +22,114 @@
#include "obs/gs/gs-helper.hpp" #include "obs/gs/gs-helper.hpp"
#include "utility.hpp" #include "utility.hpp"
void gs::vertex_buffer::initialize(std::size_t capacity, std::size_t layers) void gs::vertex_buffer::initialize(uint32_t capacity, uint8_t layers)
{ {
finalize();
if (capacity > MAXIMUM_VERTICES) { if (capacity > MAXIMUM_VERTICES) {
throw std::out_of_range("capacity too large"); throw std::out_of_range("capacity");
} }
if (layers > MAXIMUM_UVW_LAYERS) { if (layers > MAXIMUM_UVW_LAYERS) {
throw std::out_of_range("too many layers"); throw std::out_of_range("layers");
} }
// Allocate memory for data. // Allocate memory for data.
_data = gs_vbdata_create(); _data = std::make_shared<decltype(_data)::element_type>();
_data->num = _capacity; _data->num = _capacity;
_data->num_tex = _layers; _data->num_tex = _layers;
_data->points = _positions = (vec3*)util::malloc_aligned(16, sizeof(vec3) * _capacity); _data->points = _positions = (vec3*)util::malloc_aligned(16, sizeof(vec3) * _capacity);
memset(_positions, 0, sizeof(vec3) * _capacity);
_data->normals = _normals = (vec3*)util::malloc_aligned(16, sizeof(vec3) * _capacity); _data->normals = _normals = (vec3*)util::malloc_aligned(16, sizeof(vec3) * _capacity);
memset(_normals, 0, sizeof(vec3) * _capacity);
_data->tangents = _tangents = (vec3*)util::malloc_aligned(16, sizeof(vec3) * _capacity); _data->tangents = _tangents = (vec3*)util::malloc_aligned(16, sizeof(vec3) * _capacity);
memset(_tangents, 0, sizeof(vec3) * _capacity);
_data->colors = _colors = (uint32_t*)util::malloc_aligned(16, sizeof(uint32_t) * _capacity); _data->colors = _colors = (uint32_t*)util::malloc_aligned(16, sizeof(uint32_t) * _capacity);
// Clear the allocated memory of any data.
memset(_positions, 0, sizeof(vec3) * _capacity);
memset(_normals, 0, sizeof(vec3) * _capacity);
memset(_tangents, 0, sizeof(vec3) * _capacity);
memset(_colors, 0, sizeof(uint32_t) * _capacity); memset(_colors, 0, sizeof(uint32_t) * _capacity);
if (_layers > 0) {
_data->tvarray = _layer_data = (gs_tvertarray*)util::malloc_aligned(16, sizeof(gs_tvertarray) * _layers); if (_layers == 0) {
for (std::size_t n = 0; n < _layers; n++) { _data->tvarray = nullptr;
_layer_data[n].array = _uvs[n] = (vec4*)util::malloc_aligned(16, sizeof(vec4) * _capacity); } else {
_layer_data[n].width = 4; _data->tvarray = _uv_layers = (gs_tvertarray*)util::malloc_aligned(16, sizeof(gs_tvertarray) * _layers);
for (uint8_t n = 0; n < _layers; n++) {
_uv_layers[n].array = _uvs[n] = (vec4*)util::malloc_aligned(16, sizeof(vec4) * _capacity);
_uv_layers[n].width = 4;
memset(_uvs[n], 0, sizeof(vec4) * _capacity); memset(_uvs[n], 0, sizeof(vec4) * _capacity);
} }
} else {
_data->tvarray = nullptr;
}
} }
gs::vertex_buffer::~vertex_buffer() // Allocate actual GPU vertex buffer.
{ {
if (_positions) {
util::free_aligned(_positions);
_positions = nullptr;
}
if (_normals) {
util::free_aligned(_normals);
_normals = nullptr;
}
if (_tangents) {
util::free_aligned(_tangents);
_tangents = nullptr;
}
if (_colors) {
util::free_aligned(_colors);
_colors = nullptr;
}
for (std::size_t n = 0; n < _layers; n++) {
if (_uvs[n]) {
util::free_aligned(_uvs[n]);
_uvs[n] = nullptr;
}
}
if (_layer_data) {
util::free_aligned(_layer_data);
_layer_data = nullptr;
}
if (_data) {
memset(_data, 0, sizeof(gs_vb_data));
if (!_buffer) {
gs_vbdata_destroy(_data);
_data = nullptr;
}
}
if (_buffer) {
auto gctx = gs::context(); auto gctx = gs::context();
gs_vertexbuffer_destroy(_buffer); _buffer =
_buffer = nullptr; decltype(_buffer)(gs_vertexbuffer_create(_data.get(), GS_DYNAMIC | GS_DUP_BUFFER), [this](gs_vertbuffer_t* v) {
} try {
}
gs::vertex_buffer::vertex_buffer() : vertex_buffer(MAXIMUM_VERTICES, MAXIMUM_UVW_LAYERS) {}
gs::vertex_buffer::vertex_buffer(std::uint32_t vertices) : vertex_buffer(vertices, MAXIMUM_UVW_LAYERS) {}
gs::vertex_buffer::vertex_buffer(std::uint32_t vertices, std::uint8_t uvlayers)
: _size(vertices), _capacity(vertices), _layers(uvlayers), _positions(nullptr), _normals(nullptr),
_tangents(nullptr), _colors(nullptr), _data(nullptr), _buffer(nullptr), _layer_data(nullptr)
{
initialize(vertices, uvlayers);
if (vertices > MAXIMUM_VERTICES) {
throw std::out_of_range("vertices out of range");
}
if (uvlayers > MAXIMUM_UVW_LAYERS) {
throw std::out_of_range("uvlayers out of range");
}
// Allocate GPU
auto gctx = gs::context(); auto gctx = gs::context();
_buffer = gs_vertexbuffer_create(_data, GS_DYNAMIC | GS_DUP_BUFFER); gs_vertexbuffer_destroy(v);
memset(_data, 0, sizeof(gs_vb_data)); } catch (...) {
_data->num = _capacity; if (obs_get_version() < MAKE_SEMANTIC_VERSION(26, 0, 0)) {
_data->num_tex = _layers; // Fixes a memory leak with OBS Studio versions older than 26.x.
gs_vbdata_destroy(_obs_data);
}
}
});
_obs_data = gs_vertexbuffer_get_data(_buffer.get());
}
if (!_buffer) { if (!_buffer) {
throw std::runtime_error("Failed to create vertex buffer."); throw std::runtime_error("Failed to create vertex buffer.");
} }
} }
// cppcheck-suppress uninitMemberVar void gs::vertex_buffer::finalize()
{
// Free data
util::free_aligned(_positions);
util::free_aligned(_normals);
util::free_aligned(_tangents);
util::free_aligned(_colors);
util::free_aligned(_uv_layers);
for (std::size_t n = 0; n < _layers; n++) {
util::free_aligned(_uvs[n]);
}
_buffer.reset();
_data.reset();
}
gs::vertex_buffer::~vertex_buffer()
{
finalize();
}
gs::vertex_buffer::vertex_buffer(uint32_t size, uint8_t layers)
: _capacity(size), _size(size), _layers(layers),
_buffer(nullptr), _data(nullptr),
_positions(nullptr), _normals(nullptr), _tangents(nullptr), _colors(nullptr), _uv_layers(nullptr), _uvs(),
_obs_data(nullptr)
{
initialize(_size, _layers);
}
gs::vertex_buffer::vertex_buffer(gs_vertbuffer_t* vb) gs::vertex_buffer::vertex_buffer(gs_vertbuffer_t* vb)
: _size(0), _capacity(0), _layers(0), _positions(nullptr), _normals(nullptr), _tangents(nullptr), _colors(nullptr), : _capacity(0), _size(0), _layers(0),
_uvs(), _data(nullptr), _buffer(nullptr), _layer_data(nullptr)
_buffer(nullptr), _data(nullptr),
_positions(nullptr), _normals(nullptr), _tangents(nullptr), _colors(nullptr), _uv_layers(nullptr), _uvs(),
_obs_data(nullptr)
{ {
auto gctx = gs::context(); auto gctx = gs::context();
gs_vb_data* vbd = gs_vertexbuffer_get_data(vb); gs_vb_data* vbd = gs_vertexbuffer_get_data(vb);
if (!vbd) if (!vbd)
throw std::runtime_error("vertex buffer with no data"); throw std::runtime_error("vertex buffer with no data");
initialize(vbd->num, vbd->num_tex); initialize(static_cast<uint32_t>(vbd->num), static_cast<uint8_t>(vbd->num_tex));
if (_positions && vbd->points) if (_positions && vbd->points)
memcpy(_positions, vbd->points, vbd->num * sizeof(vec3)); memcpy(_positions, vbd->points, vbd->num * sizeof(vec3));
@ -153,7 +147,6 @@ gs::vertex_buffer::vertex_buffer(gs_vertbuffer_t* vb)
} else if (vbd->tvarray[n].width < 4) { } else if (vbd->tvarray[n].width < 4) {
for (std::size_t idx = 0; idx < _capacity; idx++) { for (std::size_t idx = 0; idx < _capacity; idx++) {
float* mem = reinterpret_cast<float*>(vbd->tvarray[n].array) + (idx * vbd->tvarray[n].width); float* mem = reinterpret_cast<float*>(vbd->tvarray[n].array) + (idx * vbd->tvarray[n].width);
// cppcheck-suppress memsetClassFloat
memset(&_uvs[n][idx], 0, sizeof(vec4)); memset(&_uvs[n][idx], 0, sizeof(vec4));
memcpy(&_uvs[n][idx], mem, vbd->tvarray[n].width); memcpy(&_uvs[n][idx], mem, vbd->tvarray[n].width);
} }
@ -163,114 +156,95 @@ gs::vertex_buffer::vertex_buffer(gs_vertbuffer_t* vb)
} }
} }
// cppcheck-suppress uninitMemberVar gs::vertex_buffer::vertex_buffer(vertex_buffer const& other) : vertex_buffer(other._capacity, other._layers)
gs::vertex_buffer::vertex_buffer(vertex_buffer const& other) : vertex_buffer(other._capacity) { // Copy Constructor
{
// Copy Constructor
memcpy(_positions, other._positions, _capacity * sizeof(vec3)); memcpy(_positions, other._positions, _capacity * sizeof(vec3));
memcpy(_normals, other._normals, _capacity * sizeof(vec3)); memcpy(_normals, other._normals, _capacity * sizeof(vec3));
memcpy(_tangents, other._tangents, _capacity * sizeof(vec3)); memcpy(_tangents, other._tangents, _capacity * sizeof(vec3));
memcpy(_colors, other._colors, _capacity * sizeof(vec3)); memcpy(_colors, other._colors, _capacity * sizeof(vec3));
for (std::size_t n = 0; n < MAXIMUM_UVW_LAYERS; n++) { for (std::size_t n = 0; n < other._layers; n++) {
memcpy(_uvs[n], other._uvs[n], _capacity * sizeof(vec3)); memcpy(_uvs[n], other._uvs[n], _capacity * sizeof(vec4));
} }
} }
gs::vertex_buffer::vertex_buffer(vertex_buffer const&& other) noexcept : _uvs() void gs::vertex_buffer::operator=(vertex_buffer const& other)
{ { // Copy operator
// Move Constructor initialize(other._capacity, other._layers);
_size = other._size;
// Copy actual data over.
memcpy(_positions, other._positions, other._capacity * sizeof(vec3));
memcpy(_normals, other._normals, other._capacity * sizeof(vec3));
memcpy(_tangents, other._tangents, other._capacity * sizeof(vec3));
memcpy(_colors, other._colors, other._capacity * sizeof(uint32_t));
memcpy(_uv_layers, other._uv_layers, sizeof(gs_tvertarray));
for (std::size_t n = 0; n < other._layers; n++) {
memcpy(_uvs[n], other._uvs[n], _capacity * sizeof(vec4));
}
}
gs::vertex_buffer::vertex_buffer(vertex_buffer const&& other) noexcept
{ // Move Constructor
_capacity = other._capacity; _capacity = other._capacity;
_size = other._size; _size = other._size;
_layers = other._layers; _layers = other._layers;
_buffer = other._buffer;
_data = other._data;
_positions = other._positions; _positions = other._positions;
_normals = other._normals; _normals = other._normals;
_tangents = other._tangents; _tangents = other._tangents;
_colors = other._colors; _colors = other._colors;
_uv_layers = other._uv_layers;
for (std::size_t n = 0; n < MAXIMUM_UVW_LAYERS; n++) { for (std::size_t n = 0; n < MAXIMUM_UVW_LAYERS; n++) {
_uvs[n] = other._uvs[n]; _uvs[n] = other._uvs[n];
} }
_data = other._data; _obs_data = other._obs_data;
_buffer = other._buffer;
_layer_data = other._layer_data;
} }
void gs::vertex_buffer::operator=(vertex_buffer const&& other) noexcept void gs::vertex_buffer::operator=(vertex_buffer const&& other)
{ { // Move Assignment
// Move Assignment finalize();
/// First self-destruct (semi-destruct itself).
if (_positions) {
util::free_aligned(_positions);
_positions = nullptr;
}
if (_normals) {
util::free_aligned(_normals);
_normals = nullptr;
}
if (_tangents) {
util::free_aligned(_tangents);
_tangents = nullptr;
}
if (_colors) {
util::free_aligned(_colors);
_colors = nullptr;
}
for (std::size_t n = 0; n < MAXIMUM_UVW_LAYERS; n++) {
if (_uvs[n]) {
util::free_aligned(_uvs[n]);
_uvs[n] = nullptr;
}
}
if (_layer_data) {
util::free_aligned(_layer_data);
_layer_data = nullptr;
}
if (_data) {
memset(_data, 0, sizeof(gs_vb_data));
if (!_buffer) {
gs_vbdata_destroy(_data);
_data = nullptr;
}
}
if (_buffer) {
auto gctx = gs::context();
gs_vertexbuffer_destroy(_buffer);
_buffer = nullptr;
}
/// Then assign new values.
_capacity = other._capacity; _capacity = other._capacity;
_size = other._size; _size = other._size;
_layers = other._layers; _layers = other._layers;
_buffer = other._buffer;
_data = other._data;
_positions = other._positions; _positions = other._positions;
_normals = other._normals; _normals = other._normals;
_tangents = other._tangents; _tangents = other._tangents;
_colors = other._colors;
_uv_layers = other._uv_layers;
for (std::size_t n = 0; n < MAXIMUM_UVW_LAYERS; n++) { for (std::size_t n = 0; n < MAXIMUM_UVW_LAYERS; n++) {
_uvs[n] = other._uvs[n]; _uvs[n] = other._uvs[n];
} }
_data = other._data; _obs_data = other._obs_data;
_buffer = other._buffer;
_layer_data = other._layer_data;
} }
void gs::vertex_buffer::resize(std::uint32_t new_size) void gs::vertex_buffer::resize(uint32_t size)
{ {
if (new_size > _capacity) { if (size > _capacity) {
throw std::out_of_range("new_size out of range"); throw std::out_of_range("size larger than capacity");
} }
_size = new_size; _size = size;
} }
std::uint32_t gs::vertex_buffer::size() uint32_t gs::vertex_buffer::size()
{ {
return _size; return _size;
} }
uint32_t gs::vertex_buffer::capacity()
{
return _capacity;
}
bool gs::vertex_buffer::empty() bool gs::vertex_buffer::empty()
{ {
return _size == 0; return _size == 0;
} }
const gs::vertex gs::vertex_buffer::at(std::uint32_t idx) const gs::vertex gs::vertex_buffer::at(uint32_t idx)
{ {
if (idx >= _size) { if (idx >= _size) {
throw std::out_of_range("idx out of range"); throw std::out_of_range("idx out of range");
@ -283,17 +257,17 @@ const gs::vertex gs::vertex_buffer::at(std::uint32_t idx)
return vtx; return vtx;
} }
const gs::vertex gs::vertex_buffer::operator[](std::uint32_t const pos) const gs::vertex gs::vertex_buffer::operator[](uint32_t const pos)
{ {
return at(pos); return at(pos);
} }
void gs::vertex_buffer::set_uv_layers(std::uint32_t layers) void gs::vertex_buffer::set_uv_layers(uint8_t layers)
{ {
_layers = layers; _layers = layers;
} }
std::uint32_t gs::vertex_buffer::get_uv_layers() uint8_t gs::vertex_buffer::get_uv_layers()
{ {
return _layers; return _layers;
} }
@ -318,7 +292,7 @@ uint32_t* gs::vertex_buffer::get_colors()
return _colors; return _colors;
} }
vec4* gs::vertex_buffer::get_uv_layer(std::size_t idx) vec4* gs::vertex_buffer::get_uv_layer(uint8_t idx)
{ {
if (idx >= _layers) { if (idx >= _layers) {
throw std::out_of_range("idx out of range"); throw std::out_of_range("idx out of range");
@ -328,40 +302,12 @@ vec4* gs::vertex_buffer::get_uv_layer(std::size_t idx)
gs_vertbuffer_t* gs::vertex_buffer::update(bool refreshGPU) gs_vertbuffer_t* gs::vertex_buffer::update(bool refreshGPU)
{ {
if (!refreshGPU) if (refreshGPU) {
return _buffer;
if (_size > _capacity)
throw std::out_of_range("size is larger than capacity");
// Update VertexBuffer data.
auto gctx = gs::context(); auto gctx = gs::context();
_data = gs_vertexbuffer_get_data(_buffer); gs_vertexbuffer_flush_direct(_buffer.get(), _data.get());
memset(_data, 0, sizeof(gs_vb_data)); _obs_data = gs_vertexbuffer_get_data(_buffer.get());
_data->num = _capacity;
_data->points = _positions;
_data->normals = _normals;
_data->tangents = _tangents;
_data->colors = _colors;
_data->num_tex = _layers;
_data->tvarray = _layer_data;
for (std::size_t n = 0; n < _layers; n++) {
_layer_data[n].array = _uvs[n];
_layer_data[n].width = 4;
} }
return _buffer.get();
// Update GPU
gs_vertexbuffer_flush(_buffer);
// WORKAROUND: OBS Studio 20.x and below incorrectly deletes data that it doesn't own.
memset(_data, 0, sizeof(gs_vb_data));
_data->num = _capacity;
_data->num_tex = _layers;
for (std::uint32_t n = 0; n < _layers; n++) {
_layer_data[n].width = 4;
}
return _buffer;
} }
gs_vertbuffer_t* gs::vertex_buffer::update() gs_vertbuffer_t* gs::vertex_buffer::update()

View file

@ -25,23 +25,27 @@
namespace gs { namespace gs {
class vertex_buffer { class vertex_buffer {
std::uint32_t _size; uint32_t _capacity;
std::uint32_t _capacity; uint32_t _size;
std::uint32_t _layers; uint8_t _layers;
// OBS GS Data
std::shared_ptr<gs_vertbuffer_t> _buffer;
std::shared_ptr<gs_vb_data> _data;
// Memory Storage // Memory Storage
vec3* _positions; vec3* _positions;
vec3* _normals; vec3* _normals;
vec3* _tangents; vec3* _tangents;
uint32_t* _colors; uint32_t* _colors;
gs_tvertarray* _uv_layers;
vec4* _uvs[MAXIMUM_UVW_LAYERS]; vec4* _uvs[MAXIMUM_UVW_LAYERS];
// OBS GS Data // OBS compatability
gs_vb_data* _data; gs_vb_data* _obs_data;
gs_vertbuffer_t* _buffer;
gs_tvertarray* _layer_data;
void initialize(std::size_t capacity, std::size_t layers); void initialize(uint32_t capacity, uint8_t layers);
void finalize();
public: public:
virtual ~vertex_buffer(); virtual ~vertex_buffer();
@ -49,14 +53,14 @@ namespace gs {
/*! /*!
* \brief Create a Vertex Buffer with the default number of Vertices. * \brief Create a Vertex Buffer with the default number of Vertices.
*/ */
vertex_buffer(); vertex_buffer() : vertex_buffer(MAXIMUM_VERTICES, MAXIMUM_UVW_LAYERS) {}
/*! /*!
* \brief Create a Vertex Buffer with a specific number of Vertices. * \brief Create a Vertex Buffer with a specific number of Vertices.
* *
* \param vertices Number of vertices to store. * \param vertices Number of vertices to store.
*/ */
vertex_buffer(std::uint32_t vertices); vertex_buffer(uint32_t vertices) : vertex_buffer(vertices, MAXIMUM_UVW_LAYERS) {}
/*! /*!
* \brief Create a Vertex Buffer with a specific number of Vertices and uv layers. * \brief Create a Vertex Buffer with a specific number of Vertices and uv layers.
@ -64,7 +68,7 @@ namespace gs {
* \param vertices Number of vertices to store. * \param vertices Number of vertices to store.
* \param layers Number of uv layers to store. * \param layers Number of uv layers to store.
*/ */
vertex_buffer(std::uint32_t vertices, std::uint8_t layers); vertex_buffer(uint32_t vertices, uint8_t layers);
/*! /*!
* \brief Create a copy of a Vertex Buffer * \brief Create a copy of a Vertex Buffer
@ -90,7 +94,7 @@ namespace gs {
* *
* \param other * \param other
*/ */
void operator=(vertex_buffer const& other) = delete; void operator=(vertex_buffer const& other);
// Move Constructor & Assignments // Move Constructor & Assignments
@ -108,21 +112,23 @@ namespace gs {
* *
* \param other * \param other
*/ */
void operator=(vertex_buffer const&& other) noexcept; void operator=(vertex_buffer const&& other);
void resize(std::uint32_t new_size); void resize(uint32_t new_size);
std::uint32_t size(); uint32_t size();
uint32_t capacity();
bool empty(); bool empty();
const gs::vertex at(std::uint32_t idx); const gs::vertex at(uint32_t idx);
const gs::vertex operator[](std::uint32_t const pos); const gs::vertex operator[](uint32_t const pos);
void set_uv_layers(std::uint32_t layers); void set_uv_layers(uint8_t layers);
std::uint32_t get_uv_layers(); uint8_t get_uv_layers();
/*! /*!
* \brief Directly access the positions buffer * \brief Directly access the positions buffer
@ -162,7 +168,7 @@ namespace gs {
* *
* \return A <vec4*> that points at the first vertex's uv. * \return A <vec4*> that points at the first vertex's uv.
*/ */
vec4* get_uv_layer(std::size_t idx); vec4* get_uv_layer(uint8_t idx);
gs_vertbuffer_t* update(); gs_vertbuffer_t* update();