obs-StreamFX/source/filters/filter-autoframing.cpp

1344 lines
43 KiB
C++
Raw Normal View History

/*
* Modern effects for a modern Streamer
* Copyright (C) 2020 Michael Fabian Dirks
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "filter-autoframing.hpp"
#include "obs/gs/gs-helper.hpp"
#include "util/util-logging.hpp"
#ifdef _DEBUG
#define ST_PREFIX "<%s> "
#define D_LOG_ERROR(x, ...) P_LOG_ERROR(ST_PREFIX##x, __FUNCTION_SIG__, __VA_ARGS__)
#define D_LOG_WARNING(x, ...) P_LOG_WARN(ST_PREFIX##x, __FUNCTION_SIG__, __VA_ARGS__)
#define D_LOG_INFO(x, ...) P_LOG_INFO(ST_PREFIX##x, __FUNCTION_SIG__, __VA_ARGS__)
#define D_LOG_DEBUG(x, ...) P_LOG_DEBUG(ST_PREFIX##x, __FUNCTION_SIG__, __VA_ARGS__)
#else
#define ST_PREFIX "<filter::autoframing> "
#define D_LOG_ERROR(...) P_LOG_ERROR(ST_PREFIX __VA_ARGS__)
#define D_LOG_WARNING(...) P_LOG_WARN(ST_PREFIX __VA_ARGS__)
#define D_LOG_INFO(...) P_LOG_INFO(ST_PREFIX __VA_ARGS__)
#define D_LOG_DEBUG(...) P_LOG_DEBUG(ST_PREFIX __VA_ARGS__)
#endif
// Auto-Framing is the process of tracking important information inside of a group of video or
// audio samples, and then automatically cutting away all the unnecessary parts. In our case, we
// will focus on video only as the audio field is already covered by other solutions, like Noise
// Gate, Denoising, etc. The implementation will rely on the Provider system, so varying
// functionality should be expected from all providers. Some providers may only offer a way to
// track a single face, others will allow groups, yet others will allow even non-humans to be
// tracked.
//
// The goal is to provide Auto-Framing for single person streams ('Solo') as well as group streams
// ('Group'), though the latter will only be available if the provider supports it. In 'Solo' mode
// the filter will perfectly frame a single person, and no more than that. In 'Group' mode, it will
// combine all important elements into a single frame, and track that instead. In the future, we
// might want to offer a third mode to give each tracked face a separate frame however this may
// exceed the intended complexity of this feature entirely.
/** Settings
* Framing
* Mode: How should things be tracked?
* Solo: Frame only a single face.
* Group: Frame many faces, group all into single frame.
* Padding: How many pixels/much % of tracked are should be kept
* Aspect Ratio: What Aspect Ratio should the framed output have?
* Stability: How stable is the framing against changes of tracked elements?
*
* Motion
* Motion Prediction: How much should we attempt to predict where tracked elements move?
* Smoothing: How much should the position between tracking attempts
*
* Advanced
* Provider: What provider should be used?
* Frequency: How often should we track? Every frame, every 2nd frame, etc.
*/
#define ST_I18N "Filter.AutoFraming"
#define ST_I18N_TRACKING ST_I18N ".Tracking"
#define ST_KEY_TRACKING_MODE "Tracking.Mode"
#define ST_I18N_TRACKING_MODE ST_I18N_TRACKING ".Mode"
#define ST_I18N_FRAMING_MODE_SOLO ST_I18N_TRACKING_MODE ".Solo"
#define ST_I18N_FRAMING_MODE_GROUP ST_I18N_TRACKING_MODE ".Group"
#define ST_KEY_TRACKING_FREQUENCY "Tracking.Frequency"
#define ST_I18N_TRACKING_FREQUENCY ST_I18N_TRACKING ".Frequency"
#define ST_I18N_MOTION ST_I18N ".Motion"
#define ST_KEY_MOTION_PREDICTION "Motion.Prediction"
#define ST_I18N_MOTION_PREDICTION ST_I18N_MOTION ".Prediction"
#define ST_KEY_MOTION_SMOOTHING "Motion.Smoothing"
#define ST_I18N_MOTION_SMOOTHING ST_I18N_MOTION ".Smoothing"
#define ST_I18N_FRAMING ST_I18N ".Framing"
#define ST_KEY_FRAMING_STABILITY "Framing.Stability"
#define ST_I18N_FRAMING_STABILITY ST_I18N_FRAMING ".Stability"
#define ST_KEY_FRAMING_PADDING "Framing.Padding"
#define ST_I18N_FRAMING_PADDING ST_I18N_FRAMING ".Padding"
#define ST_KEY_FRAMING_OFFSET "Framing.Offset"
#define ST_I18N_FRAMING_OFFSET ST_I18N_FRAMING ".Offset"
#define ST_KEY_FRAMING_ASPECTRATIO "Framing.AspectRatio"
#define ST_I18N_FRAMING_ASPECTRATIO ST_I18N_FRAMING ".AspectRatio"
#define ST_KEY_ADVANCED_PROVIDER "Provider"
#define ST_I18N_ADVANCED_PROVIDER ST_I18N ".Provider"
#define ST_I18N_ADVANCED_PROVIDER_NVIDIA_FACEDETECTION ST_I18N_ADVANCED_PROVIDER ".NVIDIA.FaceDetection"
#define ST_KALMAN_EEC 1.0f
using streamfx::filter::autoframing::autoframing_factory;
using streamfx::filter::autoframing::autoframing_instance;
using streamfx::filter::autoframing::tracking_provider;
static constexpr std::string_view HELP_URL = "https://github.com/Xaymar/obs-StreamFX/wiki/Filter-Auto-Framing";
static tracking_provider provider_priority[] = {
tracking_provider::NVIDIA_FACEDETECTION,
};
inline std::pair<bool, double_t> parse_text_as_size(const char* text)
{
double_t v = 0;
if (sscanf(text, "%lf", &v) == 1) {
const char* prc_chr = strrchr(text, '%');
if (prc_chr && (*prc_chr == '%')) {
return {true, v / 100.0};
} else {
return {false, v};
}
} else {
return {true, 1.0};
}
}
const char* streamfx::filter::autoframing::cstring(tracking_provider provider)
{
switch (provider) {
case tracking_provider::INVALID:
return "N/A";
case tracking_provider::AUTOMATIC:
return D_TRANSLATE(S_STATE_AUTOMATIC);
case tracking_provider::NVIDIA_FACEDETECTION:
return D_TRANSLATE(ST_I18N_ADVANCED_PROVIDER_NVIDIA_FACEDETECTION);
default:
throw std::runtime_error("Missing Conversion Entry");
}
}
std::string streamfx::filter::autoframing::string(tracking_provider provider)
{
return cstring(provider);
}
autoframing_instance::~autoframing_instance()
{
D_LOG_DEBUG("Finalizing... (Addr: 0x%" PRIuPTR ")", this);
{ // Unload the underlying effect ASAP.
std::unique_lock<std::mutex> ul(_provider_lock);
// De-queue the underlying task.
if (_provider_task) {
streamfx::threadpool()->pop(_provider_task);
_provider_task->await_completion();
_provider_task.reset();
}
// TODO: Make this asynchronous.
switch (_provider) {
#ifdef ENABLE_FILTER_DENOISING_NVIDIA
case tracking_provider::NVIDIA_FACEDETECTION:
nvar_facedetection_unload();
break;
#endif
default:
break;
}
}
}
autoframing_instance::autoframing_instance(obs_data_t* data, obs_source_t* self)
: source_instance(data, self),
_dirty(true), _size(1, 1), _out_size(1, 1),
_gfx_debug(), _standard_effect(), _input(), _vb(),
_provider(tracking_provider::INVALID), _provider_ui(tracking_provider::INVALID), _provider_ready(false),
_provider_lock(), _provider_task(),
_track_mode(tracking_mode::SOLO), _track_frequency(1),
_motion_smoothing(0.0), _motion_smoothing_kalman_pnc(1.), _motion_smoothing_kalman_mnc(1.),
_motion_prediction(0.0),
_frame_stability(0.), _frame_stability_kalman(1.), _frame_padding_prc(), _frame_padding(), _frame_offset_prc(),
_frame_offset(), _frame_aspect_ratio(0.0),
_track_frequency_counter(0), _tracked_elements(), _predicted_elements(),
_frame_pos_x({1., 1., 1., 1.}), _frame_pos_y({1., 1., 1., 1.}), _frame_pos({0, 0}), _frame_size({1, 1}),
_debug(false)
{
D_LOG_DEBUG("Initializating... (Addr: 0x%" PRIuPTR ")", this);
{
::streamfx::obs::gs::context gctx;
// Get debug renderer.
_gfx_debug = ::streamfx::gfx::debug::get();
// Create the render target for the input buffering.
_input = std::make_shared<::streamfx::obs::gs::rendertarget>(GS_RGBA_UNORM, GS_ZS_NONE);
_input->render(1, 1); // Preallocate the RT on the driver and GPU.
// Load the required effect.
_standard_effect =
std::make_shared<::streamfx::obs::gs::effect>(::streamfx::data_file_path("effects/standard.effect"));
// Create the Vertex Buffer for rendering.
_vb = std::make_shared<::streamfx::obs::gs::vertex_buffer>(uint32_t{4}, uint8_t{1});
vec3_set(_vb->at(0).position, 0, 0, 0);
vec3_set(_vb->at(1).position, 1, 0, 0);
vec3_set(_vb->at(2).position, 0, 1, 0);
vec3_set(_vb->at(3).position, 1, 1, 0);
_vb->update(true);
}
if (data) {
load(data);
}
}
void autoframing_instance::load(obs_data_t* data)
{
// Update from passed data.
update(data);
}
void autoframing_instance::migrate(obs_data_t* data, uint64_t version)
{
if (version < STREAMFX_MAKE_VERSION(0, 11, 0, 0)) {
obs_data_unset_user_value(data, "ROI.Zoom");
obs_data_unset_user_value(data, "ROI.Offset.X");
obs_data_unset_user_value(data, "ROI.Offset.Y");
obs_data_unset_user_value(data, "ROI.Stability");
}
}
void autoframing_instance::update(obs_data_t* data)
{
// Tracking
_track_mode = static_cast<tracking_mode>(obs_data_get_int(data, ST_KEY_TRACKING_MODE));
{
if (const char* text = obs_data_get_string(data, ST_KEY_TRACKING_FREQUENCY); text != nullptr) {
float value = 0.;
if (sscanf(text, "%f", &value) == 1) {
if (const char* seconds = strchr(text, 's'); seconds == nullptr) {
value = 1.f / value; // Hz -> seconds
} else {
// No-op
}
}
_track_frequency = value;
}
}
_track_frequency_counter = 0;
// Motion
_motion_prediction = static_cast<float>(obs_data_get_double(data, ST_KEY_MOTION_PREDICTION)) / 100.f;
_motion_smoothing = static_cast<float>(obs_data_get_double(data, ST_KEY_MOTION_SMOOTHING)) / 100.f;
_motion_smoothing_kalman_pnc = streamfx::util::math::lerp<float>(1.0f, 0.00001f, _motion_smoothing);
_motion_smoothing_kalman_mnc = streamfx::util::math::lerp<float>(0.001f, 1000.0f, _motion_smoothing);
for (auto kv : _predicted_elements) {
// Regenerate filters.
kv.second->filter_pos_x = {_frame_stability_kalman, _motion_smoothing_kalman_mnc, ST_KALMAN_EEC,
kv.second->filter_pos_x.get()};
kv.second->filter_pos_y = {_frame_stability_kalman, _motion_smoothing_kalman_mnc, ST_KALMAN_EEC,
kv.second->filter_pos_y.get()};
}
// Framing
{ // Smoothing
_frame_stability = static_cast<float>(obs_data_get_double(data, ST_KEY_FRAMING_STABILITY)) / 100.f;
_frame_stability_kalman = streamfx::util::math::lerp<float>(1.0f, 0.00001f, _frame_stability);
_frame_pos_x = {_frame_stability_kalman, 1.0f, ST_KALMAN_EEC, _frame_pos_x.get()};
_frame_pos_y = {_frame_stability_kalman, 1.0f, ST_KALMAN_EEC, _frame_pos_y.get()};
_frame_size_x = {_frame_stability_kalman, 1.0f, ST_KALMAN_EEC, _frame_size_x.get()};
_frame_size_y = {_frame_stability_kalman, 1.0f, ST_KALMAN_EEC, _frame_size_y.get()};
}
{ // Padding
if (const char* text = obs_data_get_string(data, ST_KEY_FRAMING_PADDING ".X"); text != nullptr) {
float value = 0.;
if (sscanf(text, "%f", &value) == 1) {
if (const char* percent = strchr(text, '%'); percent != nullptr) {
// Flip sign, percent is negative.
value = -(value / 100.f);
_frame_padding_prc[0] = true;
} else {
_frame_padding_prc[0] = false;
}
}
_frame_padding.x = value;
}
if (const char* text = obs_data_get_string(data, ST_KEY_FRAMING_PADDING ".Y"); text != nullptr) {
float value = 0.;
if (sscanf(text, "%f", &value) == 1) {
if (const char* percent = strchr(text, '%'); percent != nullptr) {
// Flip sign, percent is negative.
value = -(value / 100.f);
_frame_padding_prc[1] = true;
} else {
_frame_padding_prc[1] = false;
}
}
_frame_padding.y = value;
}
}
{ // Offset
if (const char* text = obs_data_get_string(data, ST_KEY_FRAMING_OFFSET ".X"); text != nullptr) {
float value = 0.;
if (sscanf(text, "%f", &value) == 1) {
if (const char* percent = strchr(text, '%'); percent != nullptr) {
// Flip sign, percent is negative.
value = -(value / 100.f);
_frame_offset_prc[0] = true;
} else {
_frame_offset_prc[0] = false;
}
}
_frame_offset.x = value;
}
if (const char* text = obs_data_get_string(data, ST_KEY_FRAMING_OFFSET ".Y"); text != nullptr) {
float value = 0.;
if (sscanf(text, "%f", &value) == 1) {
if (const char* percent = strchr(text, '%'); percent != nullptr) {
// Flip sign, percent is negative.
value = -(value / 100.f);
_frame_offset_prc[1] = true;
} else {
_frame_offset_prc[1] = false;
}
}
_frame_offset.y = value;
}
}
{ // Aspect Ratio
_frame_aspect_ratio = static_cast<float>(_size.first) / static_cast<float>(_size.second);
if (const char* text = obs_data_get_string(data, ST_KEY_FRAMING_ASPECTRATIO); text != nullptr) {
if (const char* percent = strchr(text, ':'); percent != nullptr) {
float left = 0.;
float right = 0.;
if ((sscanf(text, "%f", &left) == 1) && (sscanf(percent + 1, "%f", &right) == 1)) {
_frame_aspect_ratio = left / right;
} else {
_frame_aspect_ratio = 0.0;
}
} else {
float value = 0.;
if (sscanf(text, "%f", &value) == 1) {
_frame_aspect_ratio = value;
} else {
_frame_aspect_ratio = 0.0;
}
}
}
}
// Advanced / Provider
{ // Check if the user changed which Denoising provider we use.
auto provider = static_cast<tracking_provider>(obs_data_get_int(data, ST_KEY_ADVANCED_PROVIDER));
if (provider == tracking_provider::AUTOMATIC) {
provider = autoframing_factory::get()->find_ideal_provider();
}
// Check if the provider was changed, and if so switch.
if (provider != _provider) {
_provider_ui = provider;
switch_provider(provider);
}
if (_provider_ready) {
std::unique_lock<std::mutex> ul(_provider_lock);
switch (_provider) {
#ifdef ENABLE_FILTER_UPSCALING_NVIDIA
case tracking_provider::NVIDIA_FACEDETECTION:
nvar_facedetection_update(data);
break;
#endif
default:
break;
}
}
}
_debug = obs_data_get_bool(data, "Debug");
}
void streamfx::filter::autoframing::autoframing_instance::properties(obs_properties_t* properties)
{
switch (_provider_ui) {
#ifdef ENABLE_FILTER_AUTOFRAMING_NVIDIA
case tracking_provider::NVIDIA_FACEDETECTION:
nvar_facedetection_properties(properties);
break;
#endif
default:
break;
}
}
uint32_t autoframing_instance::get_width()
{
if (_debug) {
return std::max<uint32_t>(_size.first, 1);
}
return std::max<uint32_t>(_out_size.first, 1);
}
uint32_t autoframing_instance::get_height()
{
if (_debug) {
return std::max<uint32_t>(_size.second, 1);
}
return std::max<uint32_t>(_out_size.second, 1);
}
void autoframing_instance::video_tick(float_t seconds)
{
auto target = obs_filter_get_target(_self);
auto width = obs_source_get_base_width(target);
auto height = obs_source_get_base_height(target);
_size = {width, height};
{ // Calculate output size for aspect ratio.
_out_size = _size;
if (_frame_aspect_ratio > 0.0) {
if (width > height) {
_out_size.first =
static_cast<uint32_t>(std::lroundf(static_cast<float>(_out_size.second) * _frame_aspect_ratio), 0,
std::numeric_limits<uint32_t>::max());
} else {
_out_size.second =
static_cast<uint32_t>(std::lroundf(static_cast<float>(_out_size.first) * _frame_aspect_ratio), 0,
std::numeric_limits<uint32_t>::max());
}
}
}
// Update tracking.
tracking_tick(seconds);
// Mark the effect as dirty.
_dirty = true;
}
void autoframing_instance::video_render(gs_effect_t* effect)
{
auto parent = obs_filter_get_parent(_self);
auto target = obs_filter_get_target(_self);
auto width = obs_source_get_base_width(target);
auto height = obs_source_get_base_height(target);
vec4 blank = vec4{0, 0, 0, 0};
// Ensure we have the bare minimum of valid information.
target = target ? target : parent;
effect = effect ? effect : obs_get_base_effect(OBS_EFFECT_DEFAULT);
// Skip the filter if:
// - The Provider isn't ready yet.
// - We don't have a target.
// - The width/height of the next filter in the chain is empty.
if (!_provider_ready || !target || (width == 0) || (height == 0)) {
obs_source_skip_video_filter(_self);
return;
}
#ifdef ENABLE_PROFILING
::streamfx::obs::gs::debug_marker profiler0{::streamfx::obs::gs::debug_color_source, "StreamFX Auto-Framing"};
::streamfx::obs::gs::debug_marker profiler0_0{::streamfx::obs::gs::debug_color_gray, "'%s' on '%s'",
obs_source_get_name(_self), obs_source_get_name(parent)};
#endif
if (_dirty) {
// Capture the input.
if (obs_source_process_filter_begin(_self, GS_RGBA, OBS_ALLOW_DIRECT_RENDERING)) {
auto op = _input->render(width, height);
// Set correct projection matrix.
gs_ortho(0, static_cast<float>(width), 0, static_cast<float>(height), 0, 1);
// Clear the buffer
gs_clear(GS_CLEAR_COLOR | GS_CLEAR_DEPTH, &blank, 0, 0);
// Set GPU state
gs_blend_state_push();
gs_enable_color(true, true, true, true);
gs_enable_blending(false);
gs_enable_depth_test(false);
gs_enable_stencil_test(false);
gs_set_cull_mode(GS_NEITHER);
// Render
bool srgb = gs_framebuffer_srgb_enabled();
gs_enable_framebuffer_srgb(gs_get_linear_srgb());
obs_source_process_filter_end(_self, obs_get_base_effect(OBS_EFFECT_DEFAULT), width, height);
gs_enable_framebuffer_srgb(srgb);
// Reset GPU state
gs_blend_state_pop();
} else {
obs_source_skip_video_filter(_self);
return;
}
// Lock & Process the captured input with the provider.
if (_track_frequency_counter >= _track_frequency) {
_track_frequency_counter = 0;
std::unique_lock<std::mutex> ul(_provider_lock);
switch (_provider) {
#ifdef ENABLE_FILTER_DENOISING_NVIDIA
case tracking_provider::NVIDIA_FACEDETECTION:
nvar_facedetection_process();
break;
#endif
default:
obs_source_skip_video_filter(_self);
return;
}
}
_dirty = false;
}
{ // Draw the result for the next filter to use.
#ifdef ENABLE_PROFILING
::streamfx::obs::gs::debug_marker profiler1{::streamfx::obs::gs::debug_color_render, "Render"};
#endif
if (_debug) { // Debug Mode
gs_effect_set_texture(gs_effect_get_param_by_name(effect, "image"), _input->get_object());
while (gs_effect_loop(effect, "Draw")) {
gs_draw_sprite(nullptr, 0, _size.first, _size.second);
}
for (auto kv : _predicted_elements) {
// Tracked Area (Red)
_gfx_debug->draw_rectangle(kv.first->pos.x - kv.first->size.x / 2.f,
kv.first->pos.y - kv.first->size.y / 2.f, kv.first->size.x, kv.first->size.y,
true, 0x7E0000FF);
// Velocity Arrow (Black)
_gfx_debug->draw_arrow(kv.first->pos.x, kv.first->pos.y, kv.first->pos.x + kv.first->vel.x,
kv.first->pos.y + kv.first->vel.y, 0., 0x7E000000);
// Predicted Area (Orange)
_gfx_debug->draw_rectangle(kv.second->mp_pos.x - kv.first->size.x / 2.f,
kv.second->mp_pos.y - kv.first->size.y / 2.f, kv.first->size.x,
kv.first->size.y, true, 0x7E007EFF);
// Filtered Area (Yellow)
_gfx_debug->draw_rectangle(kv.second->filter_pos_x.get() - kv.first->size.x / 2.f,
kv.second->filter_pos_y.get() - kv.first->size.y / 2.f, kv.first->size.x,
kv.first->size.y, true, 0x7E00FFFF);
// Offset Filtered Area (Blue)
_gfx_debug->draw_rectangle(kv.second->offset_pos.x - kv.first->size.x / 2.f,
kv.second->offset_pos.y - kv.first->size.y / 2.f, kv.first->size.x,
kv.first->size.y, true, 0x7EFF0000);
// Padded Offset Filtered Area (Cyan)
_gfx_debug->draw_rectangle(kv.second->offset_pos.x - kv.second->pad_size.x / 2.f,
kv.second->offset_pos.y - kv.second->pad_size.y / 2.f, kv.second->pad_size.x,
kv.second->pad_size.y, true, 0x7EFFFF00);
// Aspect-Ratio-Corrected Padded Offset Filtered Area (Green)
_gfx_debug->draw_rectangle(kv.second->offset_pos.x - kv.second->aspected_size.x / 2.f,
kv.second->offset_pos.y - kv.second->aspected_size.y / 2.f,
kv.second->aspected_size.x, kv.second->aspected_size.y, true, 0x7E00FF00);
}
// Final Region (White)
_gfx_debug->draw_rectangle(_frame_pos.x - _frame_size.x / 2.f, _frame_pos.y - _frame_size.y / 2.f,
_frame_size.x, _frame_size.y, true, 0x7EFFFFFF);
} else {
float x0 = (_frame_pos.x - _frame_size.x / 2.f) / static_cast<float>(_size.first);
float x1 = (_frame_pos.x + _frame_size.x / 2.f) / static_cast<float>(_size.first);
float y0 = (_frame_pos.y - _frame_size.y / 2.f) / static_cast<float>(_size.second);
float y1 = (_frame_pos.y + _frame_size.y / 2.f) / static_cast<float>(_size.second);
{
auto v = _vb->at(0);
vec3_set(v.position, 0., 0., 0.);
v.uv[0]->x = x0;
v.uv[0]->y = y0;
}
{
auto v = _vb->at(1);
vec3_set(v.position, static_cast<float>(_out_size.first), 0., 0.);
v.uv[0]->x = x1;
v.uv[0]->y = y0;
}
{
auto v = _vb->at(2);
vec3_set(v.position, 0., static_cast<float>(_out_size.second), 0.);
v.uv[0]->x = x0;
v.uv[0]->y = y1;
}
{
auto v = _vb->at(3);
vec3_set(v.position, static_cast<float>(_out_size.first), static_cast<float>(_out_size.second), 0.);
v.uv[0]->x = x1;
v.uv[0]->y = y1;
}
gs_load_vertexbuffer(_vb->update(true));
if (!effect) {
if (_standard_effect->has_parameter("InputA", ::streamfx::obs::gs::effect_parameter::type::Texture)) {
_standard_effect->get_parameter("InputA").set_texture(_input->get_texture());
}
while (gs_effect_loop(_standard_effect->get_object(), "Texture")) {
gs_draw(GS_TRISTRIP, 0, 4);
}
} else {
gs_effect_set_texture(gs_effect_get_param_by_name(effect, "image"),
_input->get_texture()->get_object());
while (gs_effect_loop(effect, "Draw")) {
gs_draw(GS_TRISTRIP, 0, 4);
}
}
gs_load_vertexbuffer(nullptr);
}
}
}
void streamfx::filter::autoframing::autoframing_instance::tracking_tick(float seconds)
{
{ // Increase the age of all elements, and kill off any that are "too old".
float threshold = (0.5f * (1.f / (1.f - _track_frequency)));
auto iter = _tracked_elements.begin();
while (iter != _tracked_elements.end()) {
// Increment the age by the tick duration.
(*iter)->age += seconds;
// If the age exceeds the threshold, remove it.
if ((*iter)->age >= threshold) {
if (iter == _tracked_elements.begin()) {
// Erase iter, then reset to start.
_predicted_elements.erase(*iter);
_tracked_elements.erase(iter);
iter = _tracked_elements.begin();
} else {
// Copy, then advance before erasing.
auto iter2 = iter;
iter++;
_predicted_elements.erase(*iter2);
_tracked_elements.erase(iter2);
}
} else {
// Move ahead.
iter++;
}
}
}
for (auto trck : _tracked_elements) { // Updated predicted elements
std::shared_ptr<pred_el> pred;
// Find the corresponding prediction element.
auto iter = _predicted_elements.find(trck);
if (iter == _predicted_elements.end()) {
pred = std::make_shared<pred_el>();
_predicted_elements.insert_or_assign(trck, pred);
pred->filter_pos_x = {_motion_smoothing_kalman_pnc, _motion_smoothing_kalman_mnc, ST_KALMAN_EEC,
trck->pos.x};
pred->filter_pos_y = {_motion_smoothing_kalman_pnc, _motion_smoothing_kalman_mnc, ST_KALMAN_EEC,
trck->pos.y};
} else {
pred = iter->second;
}
// Calculate absolute velocity.
vec2 vel;
vec2_copy(&vel, &trck->vel);
vec2_mulf(&vel, &vel, _motion_prediction);
vec2_mulf(&vel, &vel, seconds);
// Calculate predicted position.
vec2 pos;
if (trck->age > seconds) {
vec2_copy(&pos, &pred->mp_pos);
} else {
vec2_copy(&pos, &trck->pos);
}
vec2_add(&pos, &pos, &vel);
vec2_copy(&pred->mp_pos, &pos);
// Update filtered position.
pred->filter_pos_x.filter(pred->mp_pos.x);
pred->filter_pos_y.filter(pred->mp_pos.y);
// Update offset position.
vec2_set(&pred->offset_pos, pred->filter_pos_x.get(), pred->filter_pos_y.get());
if (_frame_offset_prc[0]) { // %
pred->offset_pos.x += trck->size.x * (-_frame_offset.x);
} else { // Pixels
pred->offset_pos.x += _frame_offset.x;
}
if (_frame_offset_prc[1]) { // %
pred->offset_pos.y += trck->size.y * (-_frame_offset.y);
} else { // Pixels
pred->offset_pos.y += _frame_offset.y;
}
// Calculate padded area.
vec2_copy(&pred->pad_size, &trck->size);
if (_frame_padding_prc[0]) { // %
pred->pad_size.x += trck->size.x * (-_frame_padding.x) * 2.f;
} else { // Pixels
pred->pad_size.x += _frame_padding.x * 2.f;
}
if (_frame_padding_prc[1]) { // %
pred->pad_size.y += trck->size.y * (-_frame_padding.y) * 2.f;
} else { // Pixels
pred->pad_size.y += _frame_padding.y * 2.f;
}
// Adjust to match aspect ratio (width / height).
vec2_copy(&pred->aspected_size, &pred->pad_size);
if (_frame_aspect_ratio > 0.0) {
if ((pred->aspected_size.x / pred->aspected_size.y) >= _frame_aspect_ratio) { // Ours > Target
pred->aspected_size.y = pred->aspected_size.x / _frame_aspect_ratio;
} else { // Target > Ours
pred->aspected_size.x = pred->aspected_size.y * _frame_aspect_ratio;
}
}
}
{ // Find final frame.
bool need_filter = true;
if (_predicted_elements.size() > 0) {
if (_track_mode == tracking_mode::SOLO) {
auto kv = _predicted_elements.rbegin();
_frame_pos_x.filter(kv->second->offset_pos.x);
_frame_pos_y.filter(kv->second->offset_pos.y);
vec2_set(&_frame_pos, _frame_pos_x.get(), _frame_pos_y.get());
vec2_copy(&_frame_size, &kv->second->aspected_size);
need_filter = false;
} else {
vec2 min;
vec2 max;
vec2_set(&min, std::numeric_limits<float>::max(), std::numeric_limits<float>::max());
vec2_set(&max, 0., 0.);
for (auto kv : _predicted_elements) {
vec2 size;
vec2 low;
vec2 high;
vec2_copy(&size, &kv.second->aspected_size);
vec2_mulf(&size, &size, .5f);
vec2_copy(&low, &kv.second->offset_pos);
vec2_copy(&high, &kv.second->offset_pos);
vec2_sub(&low, &low, &size);
vec2_add(&high, &high, &size);
if (low.x < min.x) {
min.x = low.x;
}
if (low.y < min.y) {
min.y = low.y;
}
if (high.x > max.x) {
max.x = high.x;
}
if (high.y > max.y) {
max.y = high.y;
}
}
// Calculate center.
vec2 center;
vec2_add(&center, &min, &max);
vec2_divf(&center, &center, 2.f);
// Assign center.
_frame_pos_x.filter(center.x);
_frame_pos_y.filter(center.y);
// Calculate size.
vec2 size;
vec2_copy(&size, &max);
vec2_sub(&size, &size, &min);
_frame_size_x.filter(size.x);
_frame_size_y.filter(size.y);
}
} else {
_frame_pos_x.filter(static_cast<float>(_size.first) / 2.f);
_frame_pos_y.filter(static_cast<float>(_size.second) / 2.f);
_frame_size_x.filter(static_cast<float>(_size.first));
_frame_size_y.filter(static_cast<float>(_size.second));
}
// Grab filtered data if needed, otherwise stick with direct data.
if (need_filter) {
vec2_set(&_frame_pos, _frame_pos_x.get(), _frame_pos_y.get());
vec2_set(&_frame_size, _frame_size_x.get(), _frame_size_y.get());
}
{ // Aspect Ratio correction is a three step process:
float aspect = _frame_aspect_ratio > 0.
? _frame_aspect_ratio
: (static_cast<float>(_size.first) / static_cast<float>(_size.second));
{ // 1. Adjust aspect ratio so that all elements end up contained.
float frame_aspect = _frame_size.x / _frame_size.y;
if (aspect < frame_aspect) {
_frame_size.y = _frame_size.x / aspect;
} else {
_frame_size.x = _frame_size.y * aspect;
}
}
// 2. Limit the size of the frame to the allowed region, and adjust it so it's inside the frame.
// This will move the center, which might not be a wanted side effect.
vec4 rect;
rect.x = std::clamp<float>(_frame_pos.x - _frame_size.x / 2.f, 0.f, static_cast<float>(_size.first));
rect.z = std::clamp<float>(_frame_pos.x + _frame_size.x / 2.f, 0.f, static_cast<float>(_size.first));
rect.y = std::clamp<float>(_frame_pos.y - _frame_size.y / 2.f, 0.f, static_cast<float>(_size.second));
rect.w = std::clamp<float>(_frame_pos.y + _frame_size.y / 2.f, 0.f, static_cast<float>(_size.second));
_frame_pos.x = (rect.x + rect.z) / 2.f;
_frame_pos.y = (rect.y + rect.w) / 2.f;
_frame_size.x = (rect.z - rect.x);
_frame_size.y = (rect.w - rect.y);
{ // 3. Adjust the aspect ratio so that it matches the expected output aspect ratio.
float frame_aspect = _frame_size.x / _frame_size.y;
if (aspect < frame_aspect) {
_frame_size.x = _frame_size.y * aspect;
} else {
_frame_size.y = _frame_size.x / aspect;
}
}
}
}
// Increment tracking counter.
_track_frequency_counter += seconds;
}
struct switch_provider_data_t {
tracking_provider provider;
};
void streamfx::filter::autoframing::autoframing_instance::switch_provider(tracking_provider provider)
{
std::unique_lock<std::mutex> ul(_provider_lock);
// Safeguard against calls made from unlocked memory.
if (provider == _provider) {
return;
}
// This doesn't work correctly.
// - Need to allow multiple switches at once because OBS is weird.
// - Doesn't guarantee that the task is properly killed off.
// Log information.
D_LOG_INFO("Instance '%s' is switching provider from '%s' to '%s'.", obs_source_get_name(_self), cstring(_provider),
cstring(provider));
// If there is an ongoing task to switch provider, cancel it.
if (_provider_task) {
// De-queue it.
streamfx::threadpool()->pop(_provider_task);
// Await the death of the task itself.
_provider_task->await_completion();
// Clear any memory associated with it.
_provider_task.reset();
}
// Build data to pass into the task.
auto spd = std::make_shared<switch_provider_data_t>();
spd->provider = _provider;
_provider = provider;
// Then spawn a new task to switch provider.
_provider_task = streamfx::threadpool()->push(
std::bind(&autoframing_instance::task_switch_provider, this, std::placeholders::_1), spd);
}
void streamfx::filter::autoframing::autoframing_instance::task_switch_provider(util::threadpool::task_data_t data)
{
std::shared_ptr<switch_provider_data_t> spd = std::static_pointer_cast<switch_provider_data_t>(data);
// Mark the provider as no longer ready.
_provider_ready = false;
// Lock the provider from being used.
std::unique_lock<std::mutex> ul(_provider_lock);
try {
// Unload the previous provider.
switch (spd->provider) {
#ifdef ENABLE_FILTER_AUTOFRAMING_NVIDIA
case tracking_provider::NVIDIA_FACEDETECTION:
nvar_facedetection_unload();
break;
#endif
default:
break;
}
// Load the new provider.
switch (_provider) {
#ifdef ENABLE_FILTER_AUTOFRAMING_NVIDIA
case tracking_provider::NVIDIA_FACEDETECTION:
nvar_facedetection_load();
break;
#endif
default:
break;
}
// Log information.
D_LOG_INFO("Instance '%s' switched provider from '%s' to '%s'.", obs_source_get_name(_self),
cstring(spd->provider), cstring(_provider));
_provider_ready = true;
} catch (std::exception const& ex) {
// Log information.
D_LOG_ERROR("Instance '%s' failed switching provider with error: %s", obs_source_get_name(_self), ex.what());
}
}
#ifdef ENABLE_FILTER_AUTOFRAMING_NVIDIA
void streamfx::filter::autoframing::autoframing_instance::nvar_facedetection_load()
{
_nvidia_fx = std::make_shared<::streamfx::nvidia::ar::facedetection>();
}
void streamfx::filter::autoframing::autoframing_instance::nvar_facedetection_unload()
{
_nvidia_fx.reset();
}
void streamfx::filter::autoframing::autoframing_instance::nvar_facedetection_process()
{
if (!_nvidia_fx) {
return;
}
// Frames may not move more than this distance.
float max_dst =
sqrtf(static_cast<float>(_size.first * _size.first) + static_cast<float>(_size.second * _size.second)) * 0.667f;
max_dst *= 1.f / (1.f - _track_frequency); // Fine-tune this?
// Process the current frame (if requested).
_nvidia_fx->process(_input->get_texture());
// If there are tracked faces, merge them with the tracked elements.
if (auto edx = _nvidia_fx->count(); edx > 0) {
for (size_t idx = 0; idx < edx; idx++) {
float confidence = 0.;
auto rect = _nvidia_fx->at(idx, confidence);
// Skip elements that have not enough confidence of being a face.
// TODO: Make the threshold configurable.
if (confidence < .5) {
continue;
}
// Calculate centered position.
vec2 pos;
pos.x = rect.x + (rect.z / 2.f);
pos.y = rect.y + (rect.w / 2.f);
// Try and find a match in the current list of tracked elements.
std::shared_ptr<track_el> match;
float match_dst = max_dst;
for (const auto& el : _tracked_elements) {
// Skip "fresh" elements.
if (el->age < 0.00001) {
continue;
}
// Check if the distance is within acceptable bounds.
float dst = vec2_dist(&pos, &el->pos);
if ((dst < match_dst) && (dst < max_dst)) {
match_dst = dst;
match = el;
}
}
// Do we have a match?
if (!match) {
// No, so create a new one.
match = std::make_shared<track_el>();
// Insert it.
_tracked_elements.push_back(match);
// Update information.
vec2_copy(&match->pos, &pos);
vec2_set(&match->size, rect.z, rect.w);
vec2_set(&match->vel, 0., 0.);
match->age = 0.;
} else {
// Reset the age to 0.
match->age = 0.;
// Calculate the velocity between changes.
vec2 vel;
vec2_sub(&vel, &pos, &match->pos);
// Update information.
vec2_copy(&match->pos, &pos);
vec2_set(&match->size, rect.z, rect.w);
vec2_copy(&match->vel, &vel);
match->age = 0.;
}
}
}
}
void streamfx::filter::autoframing::autoframing_instance::nvar_facedetection_properties(obs_properties_t* props) {}
void streamfx::filter::autoframing::autoframing_instance::nvar_facedetection_update(obs_data_t* data)
{
if (!_nvidia_fx) {
return;
}
switch (_track_mode) {
case tracking_mode::SOLO:
_nvidia_fx->set_tracking_limit(1);
break;
case tracking_mode::GROUP:
_nvidia_fx->set_tracking_limit(_nvidia_fx->tracking_limit_range().second);
break;
}
}
#endif
autoframing_factory::autoframing_factory()
{
bool any_available = false;
// 1. Try and load any configured providers.
#ifdef ENABLE_FILTER_AUTOFRAMING_NVIDIA
try {
// Load CVImage and Video Effects SDK.
_nvcuda = ::streamfx::nvidia::cuda::obs::get();
_nvcvi = ::streamfx::nvidia::cv::cv::get();
_nvar = ::streamfx::nvidia::ar::ar::get();
_nvidia_available = true;
any_available |= _nvidia_available;
} catch (const std::exception& ex) {
_nvidia_available = false;
_nvar.reset();
_nvcvi.reset();
_nvcuda.reset();
D_LOG_WARNING("Failed to make NVIDIA providers available due to error: %s", ex.what());
} catch (...) {
_nvidia_available = false;
_nvar.reset();
_nvcvi.reset();
_nvcuda.reset();
D_LOG_WARNING("Failed to make NVIDIA providers available with unknown error.", nullptr);
}
#endif
// 2. Check if any of them managed to load at all.
if (!any_available) {
D_LOG_ERROR("All supported providers failed to initialize, disabling effect.", 0);
return;
}
// Register initial source.
_info.id = S_PREFIX "filter-autoframing";
_info.type = OBS_SOURCE_TYPE_FILTER;
_info.output_flags = OBS_SOURCE_VIDEO;
support_size(true);
finish_setup();
// Register proxy identifiers.
register_proxy("streamfx-filter-nvidia-face-tracking");
register_proxy("streamfx-nvidia-face-tracking");
}
autoframing_factory::~autoframing_factory() {}
const char* autoframing_factory::get_name()
{
return D_TRANSLATE(ST_I18N);
}
void autoframing_factory::get_defaults2(obs_data_t* data)
{
// Tracking
obs_data_set_default_int(data, ST_KEY_TRACKING_MODE, static_cast<int64_t>(tracking_mode::SOLO));
obs_data_set_default_string(data, ST_KEY_TRACKING_FREQUENCY, "20 Hz");
// Motion
obs_data_set_default_double(data, ST_KEY_MOTION_SMOOTHING, 33.333);
obs_data_set_default_double(data, ST_KEY_MOTION_PREDICTION, 200.0);
// Framing
obs_data_set_default_double(data, ST_KEY_FRAMING_STABILITY, 10.0);
obs_data_set_default_string(data, ST_KEY_FRAMING_PADDING ".X", "33.333 %");
obs_data_set_default_string(data, ST_KEY_FRAMING_PADDING ".Y", "33.333 %");
obs_data_set_default_string(data, ST_KEY_FRAMING_OFFSET ".X", " 0.00 %");
obs_data_set_default_string(data, ST_KEY_FRAMING_OFFSET ".Y", "-7.50 %");
obs_data_set_default_string(data, ST_KEY_FRAMING_ASPECTRATIO, "");
// Advanced
obs_data_set_default_int(data, ST_KEY_ADVANCED_PROVIDER, static_cast<int64_t>(tracking_provider::AUTOMATIC));
obs_data_set_default_bool(data, "Debug", false);
}
static bool modified_provider(obs_properties_t* props, obs_property_t*, obs_data_t* settings) noexcept
{
try {
return true;
} catch (const std::exception& ex) {
DLOG_ERROR("Unexpected exception in function '%s': %s.", __FUNCTION_NAME__, ex.what());
return false;
} catch (...) {
DLOG_ERROR("Unexpected exception in function '%s'.", __FUNCTION_NAME__);
return false;
}
}
obs_properties_t* autoframing_factory::get_properties2(autoframing_instance* data)
{
obs_properties_t* pr = obs_properties_create();
#ifdef ENABLE_FRONTEND
{
obs_properties_add_button2(pr, S_MANUAL_OPEN, D_TRANSLATE(S_MANUAL_OPEN), autoframing_factory::on_manual_open,
nullptr);
}
#endif
{
auto grp = obs_properties_create();
obs_properties_add_group(pr, ST_I18N_TRACKING, D_TRANSLATE(ST_I18N_TRACKING), OBS_GROUP_NORMAL, grp);
{
auto p = obs_properties_add_list(grp, ST_KEY_TRACKING_MODE, D_TRANSLATE(ST_I18N_TRACKING_MODE),
OBS_COMBO_TYPE_LIST, OBS_COMBO_FORMAT_INT);
obs_property_set_modified_callback(p, modified_provider);
obs_property_list_add_int(p, D_TRANSLATE(ST_I18N_FRAMING_MODE_SOLO),
static_cast<int64_t>(tracking_mode::SOLO));
obs_property_list_add_int(p, D_TRANSLATE(ST_I18N_FRAMING_MODE_GROUP),
static_cast<int64_t>(tracking_mode::GROUP));
}
{
auto p = obs_properties_add_text(grp, ST_KEY_TRACKING_FREQUENCY, D_TRANSLATE(ST_I18N_TRACKING_FREQUENCY),
OBS_TEXT_DEFAULT);
}
}
{
auto grp = obs_properties_create();
obs_properties_add_group(pr, ST_I18N_MOTION, D_TRANSLATE(ST_I18N_MOTION), OBS_GROUP_NORMAL, grp);
{
auto p = obs_properties_add_float_slider(grp, ST_KEY_MOTION_SMOOTHING,
D_TRANSLATE(ST_I18N_MOTION_SMOOTHING), 0.0, 100.0, 0.01);
obs_property_float_set_suffix(p, " %");
}
{
auto p = obs_properties_add_float_slider(grp, ST_KEY_MOTION_PREDICTION,
D_TRANSLATE(ST_I18N_MOTION_PREDICTION), 0.0, 500.0, 0.01);
obs_property_float_set_suffix(p, " %");
}
}
{
auto grp = obs_properties_create();
obs_properties_add_group(pr, ST_I18N_FRAMING, D_TRANSLATE(ST_I18N_FRAMING), OBS_GROUP_NORMAL, grp);
{
auto p = obs_properties_add_float_slider(grp, ST_KEY_FRAMING_STABILITY,
D_TRANSLATE(ST_I18N_FRAMING_STABILITY), 0.0, 100.0, 0.01);
obs_property_float_set_suffix(p, " %");
}
{
auto grp2 = obs_properties_create();
obs_properties_add_group(grp, ST_KEY_FRAMING_PADDING, D_TRANSLATE(ST_I18N_FRAMING_PADDING),
OBS_GROUP_NORMAL, grp2);
{
auto p = obs_properties_add_text(grp2, ST_KEY_FRAMING_PADDING ".X", "X", OBS_TEXT_DEFAULT);
}
{
auto p = obs_properties_add_text(grp2, ST_KEY_FRAMING_PADDING ".Y", "Y", OBS_TEXT_DEFAULT);
}
}
{
auto grp2 = obs_properties_create();
obs_properties_add_group(grp, ST_KEY_FRAMING_OFFSET, D_TRANSLATE(ST_I18N_FRAMING_OFFSET), OBS_GROUP_NORMAL,
grp2);
{
auto p = obs_properties_add_text(grp2, ST_KEY_FRAMING_OFFSET ".X", "X", OBS_TEXT_DEFAULT);
}
{
auto p = obs_properties_add_text(grp2, ST_KEY_FRAMING_OFFSET ".Y", "Y", OBS_TEXT_DEFAULT);
}
}
{
auto p = obs_properties_add_list(grp, ST_KEY_FRAMING_ASPECTRATIO, D_TRANSLATE(ST_I18N_FRAMING_ASPECTRATIO),
OBS_COMBO_TYPE_EDITABLE, OBS_COMBO_FORMAT_STRING);
obs_property_list_add_string(p, "None", "");
obs_property_list_add_string(p, "1:1", "1:1");
obs_property_list_add_string(p, "3:2", "3:2");
obs_property_list_add_string(p, "2:3", "2:3");
obs_property_list_add_string(p, "4:3", "4:3");
obs_property_list_add_string(p, "3:4", "3:4");
obs_property_list_add_string(p, "5:4", "5:4");
obs_property_list_add_string(p, "4:5", "4:5");
obs_property_list_add_string(p, "16:9", "16:9");
obs_property_list_add_string(p, "9:16", "9:16");
obs_property_list_add_string(p, "16:10", "16:10");
obs_property_list_add_string(p, "10:16", "10:16");
obs_property_list_add_string(p, "21:9", "21:9");
obs_property_list_add_string(p, "9:21", "9:21");
obs_property_list_add_string(p, "21:10", "21:10");
obs_property_list_add_string(p, "10:21", "10:21");
obs_property_list_add_string(p, "32:9", "32:9");
obs_property_list_add_string(p, "9:32", "9:32");
obs_property_list_add_string(p, "32:10", "32:10");
obs_property_list_add_string(p, "10:32", "10:32");
}
}
if (data) {
data->properties(pr);
}
{ // Advanced Settings
auto grp = obs_properties_create();
obs_properties_add_group(pr, S_ADVANCED, D_TRANSLATE(S_ADVANCED), OBS_GROUP_NORMAL, grp);
{
auto p = obs_properties_add_list(grp, ST_KEY_ADVANCED_PROVIDER, D_TRANSLATE(ST_I18N_ADVANCED_PROVIDER),
OBS_COMBO_TYPE_LIST, OBS_COMBO_FORMAT_INT);
obs_property_set_modified_callback(p, modified_provider);
obs_property_list_add_int(p, D_TRANSLATE(S_STATE_AUTOMATIC),
static_cast<int64_t>(tracking_provider::AUTOMATIC));
#ifdef ENABLE_FILTER_AUTOFRAMING_NVIDIA
obs_property_list_add_int(p, D_TRANSLATE(ST_I18N_ADVANCED_PROVIDER_NVIDIA_FACEDETECTION),
static_cast<int64_t>(tracking_provider::NVIDIA_FACEDETECTION));
#endif
}
obs_properties_add_bool(grp, "Debug", "Debug");
}
return pr;
}
#ifdef ENABLE_FRONTEND
bool streamfx::filter::autoframing::autoframing_factory::on_manual_open(obs_properties_t* props,
obs_property_t* property, void* data)
{
streamfx::open_url(HELP_URL);
return false;
}
#endif
bool streamfx::filter::autoframing::autoframing_factory::is_provider_available(tracking_provider provider)
{
switch (provider) {
#ifdef ENABLE_FILTER_AUTOFRAMING_NVIDIA
case tracking_provider::NVIDIA_FACEDETECTION:
return _nvidia_available;
#endif
default:
return false;
}
}
tracking_provider streamfx::filter::autoframing::autoframing_factory::find_ideal_provider()
{
for (auto v : provider_priority) {
if (is_provider_available(v)) {
return v;
break;
}
}
return tracking_provider::INVALID;
}
std::shared_ptr<autoframing_factory> _filter_autoframing_factory_instance = nullptr;
void autoframing_factory::initialize()
{
try {
if (!_filter_autoframing_factory_instance)
_filter_autoframing_factory_instance = std::make_shared<autoframing_factory>();
} catch (const std::exception& ex) {
D_LOG_ERROR("Failed to initialize due to error: %s", ex.what());
} catch (...) {
D_LOG_ERROR("Failed to initialize due to unknown error.", "");
}
}
void autoframing_factory::finalize()
{
_filter_autoframing_factory_instance.reset();
}
std::shared_ptr<autoframing_factory> autoframing_factory::get()
{
return _filter_autoframing_factory_instance;
}