0
0
Fork 0
mirror of https://github.com/tildearrow/furnace.git synced 2025-01-04 14:41:21 +00:00
furnace/extern/fftw/threads/hc2hc.c
2022-05-31 03:24:29 -05:00

234 lines
5.9 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "threads/threads.h"
typedef struct {
plan_rdft super;
plan *cld;
plan **cldws;
int nthr;
INT r;
} P;
typedef struct {
plan **cldws;
R *IO;
} PD;
static void *spawn_apply(spawn_data *d)
{
PD *ego = (PD *) d->data;
plan_hc2hc *cldw = (plan_hc2hc *) (ego->cldws[d->thr_num]);
cldw->apply((plan *) cldw, ego->IO);
return 0;
}
static void apply_dit(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
plan_rdft *cld;
cld = (plan_rdft *) ego->cld;
cld->apply((plan *) cld, I, O);
{
PD d;
d.IO = O;
d.cldws = ego->cldws;
X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d);
}
}
static void apply_dif(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
plan_rdft *cld;
{
PD d;
d.IO = I;
d.cldws = ego->cldws;
X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d);
}
cld = (plan_rdft *) ego->cld;
cld->apply((plan *) cld, I, O);
}
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
int i;
X(plan_awake)(ego->cld, wakefulness);
for (i = 0; i < ego->nthr; ++i)
X(plan_awake)(ego->cldws[i], wakefulness);
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
int i;
X(plan_destroy_internal)(ego->cld);
for (i = 0; i < ego->nthr; ++i)
X(plan_destroy_internal)(ego->cldws[i]);
X(ifree)(ego->cldws);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
int i;
p->print(p, "(rdft-thr-ct-%s-x%d/%D",
ego->super.apply == apply_dit ? "dit" : "dif",
ego->nthr, ego->r);
for (i = 0; i < ego->nthr; ++i)
if (i == 0 || (ego->cldws[i] != ego->cldws[i-1] &&
(i <= 1 || ego->cldws[i] != ego->cldws[i-2])))
p->print(p, "%(%p%)", ego->cldws[i]);
p->print(p, "%(%p%))", ego->cld);
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const hc2hc_solver *ego = (const hc2hc_solver *) ego_;
const problem_rdft *p;
P *pln = 0;
plan *cld = 0, **cldws = 0;
INT n, r, m, v, ivs, ovs, mcount;
int i, nthr, plnr_nthr_save;
INT block_size;
iodim *d;
static const plan_adt padt = {
X(rdft_solve), awake, print, destroy
};
if (plnr->nthr <= 1 || !X(hc2hc_applicable)(ego, p_, plnr))
return (plan *) 0;
p = (const problem_rdft *) p_;
d = p->sz->dims;
n = d[0].n;
r = X(choose_radix)(ego->r, n);
m = n / r;
mcount = (m + 2) / 2;
X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs);
block_size = (mcount + plnr->nthr - 1) / plnr->nthr;
nthr = (int)((mcount + block_size - 1) / block_size);
plnr_nthr_save = plnr->nthr;
plnr->nthr = (plnr->nthr + nthr - 1) / nthr;
cldws = (plan **) MALLOC(sizeof(plan *) * nthr, PLANS);
for (i = 0; i < nthr; ++i) cldws[i] = (plan *) 0;
switch (p->kind[0]) {
case R2HC:
for (i = 0; i < nthr; ++i) {
cldws[i] = ego->mkcldw(ego,
R2HC, r, m, d[0].os, v, ovs,
i*block_size,
(i == nthr - 1) ?
(mcount - i*block_size) : block_size,
p->O, plnr);
if (!cldws[i]) goto nada;
}
plnr->nthr = plnr_nthr_save;
cld = X(mkplan_d)(plnr,
X(mkproblem_rdft_d)(
X(mktensor_1d)(m, r * d[0].is, d[0].os),
X(mktensor_2d)(r, d[0].is, m * d[0].os,
v, ivs, ovs),
p->I, p->O, p->kind)
);
if (!cld) goto nada;
pln = MKPLAN_RDFT(P, &padt, apply_dit);
break;
case HC2R:
for (i = 0; i < nthr; ++i) {
cldws[i] = ego->mkcldw(ego,
HC2R, r, m, d[0].is, v, ivs,
i*block_size,
(i == nthr - 1) ?
(mcount - i*block_size) : block_size,
p->I, plnr);
if (!cldws[i]) goto nada;
}
plnr->nthr = plnr_nthr_save;
cld = X(mkplan_d)(plnr,
X(mkproblem_rdft_d)(
X(mktensor_1d)(m, d[0].is, r * d[0].os),
X(mktensor_2d)(r, m * d[0].is, d[0].os,
v, ivs, ovs),
p->I, p->O, p->kind)
);
if (!cld) goto nada;
pln = MKPLAN_RDFT(P, &padt, apply_dif);
break;
default:
A(0);
}
pln->cld = cld;
pln->cldws = cldws;
pln->nthr = nthr;
pln->r = r;
X(ops_zero)(&pln->super.super.ops);
for (i = 0; i < nthr; ++i) {
X(ops_add2)(&cldws[i]->ops, &pln->super.super.ops);
pln->super.super.could_prune_now_p |= cldws[i]->could_prune_now_p;
}
X(ops_add2)(&cld->ops, &pln->super.super.ops);
return &(pln->super.super);
nada:
if (cldws) {
for (i = 0; i < nthr; ++i)
X(plan_destroy_internal)(cldws[i]);
X(ifree)(cldws);
}
X(plan_destroy_internal)(cld);
return (plan *) 0;
}
hc2hc_solver *X(mksolver_hc2hc_threads)(size_t size, INT r,
hc2hc_mkinferior mkcldw)
{
static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
hc2hc_solver *slv = (hc2hc_solver *)X(mksolver)(size, &sadt);
slv->r = r;
slv->mkcldw = mkcldw;
return slv;
}