furnace/extern/fftw/rdft/scalar/r2cf/r2cf_20.c

363 lines
10 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:11 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cf_20 -include rdft/scalar/r2cf.h */
/*
* This function contains 86 FP additions, 32 FP multiplications,
* (or, 58 additions, 4 multiplications, 28 fused multiply/add),
* 51 stack variables, 4 constants, and 40 memory accesses
*/
#include "rdft/scalar/r2cf.h"
static void r2cf_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
E T3, T1d, TJ, TV, T16, T1k, T1l, T19, Ta, Th, Ti, T1e, T1f, T1g, TP;
E TQ, TX, Tn, Ts, TK, TS, TT, TW, Ty, TD, TL;
{
E T1, T2, TF, TG, TH, TI;
T1 = R0[0];
T2 = R0[WS(rs, 5)];
TF = T1 + T2;
TG = R1[WS(rs, 2)];
TH = R1[WS(rs, 7)];
TI = TG + TH;
T3 = T1 - T2;
T1d = TG - TH;
TJ = TF - TI;
TV = TF + TI;
}
{
E T6, To, Tx, T17, TC, T18, T9, Tj, Td, Tu, Tm, T15, Tr, T14, Tg;
E Tz;
{
E T4, T5, Tv, Tw;
T4 = R0[WS(rs, 2)];
T5 = R0[WS(rs, 7)];
T6 = T4 - T5;
To = T4 + T5;
Tv = R1[WS(rs, 6)];
Tw = R1[WS(rs, 1)];
Tx = Tv + Tw;
T17 = Tw - Tv;
}
{
E TA, TB, T7, T8;
TA = R1[WS(rs, 8)];
TB = R1[WS(rs, 3)];
TC = TA + TB;
T18 = TB - TA;
T7 = R0[WS(rs, 8)];
T8 = R0[WS(rs, 3)];
T9 = T7 - T8;
Tj = T7 + T8;
}
{
E Tb, Tc, Tk, Tl;
Tb = R0[WS(rs, 4)];
Tc = R0[WS(rs, 9)];
Td = Tb - Tc;
Tu = Tb + Tc;
Tk = R1[0];
Tl = R1[WS(rs, 5)];
Tm = Tk + Tl;
T15 = Tl - Tk;
}
{
E Tp, Tq, Te, Tf;
Tp = R1[WS(rs, 4)];
Tq = R1[WS(rs, 9)];
Tr = Tp + Tq;
T14 = Tq - Tp;
Te = R0[WS(rs, 6)];
Tf = R0[WS(rs, 1)];
Tg = Te - Tf;
Tz = Te + Tf;
}
T16 = T14 - T15;
T1k = T6 - T9;
T1l = Td - Tg;
T19 = T17 - T18;
Ta = T6 + T9;
Th = Td + Tg;
Ti = Ta + Th;
T1e = T14 + T15;
T1f = T17 + T18;
T1g = T1e + T1f;
TP = Tu + Tx;
TQ = Tz + TC;
TX = TP + TQ;
Tn = Tj - Tm;
Ts = To - Tr;
TK = Ts + Tn;
TS = To + Tr;
TT = Tj + Tm;
TW = TS + TT;
Ty = Tu - Tx;
TD = Tz - TC;
TL = Ty + TD;
}
Cr[WS(csr, 5)] = T3 + Ti;
Ci[WS(csi, 5)] = T1g - T1d;
{
E Tt, TE, TR, TU;
Tt = Tn - Ts;
TE = Ty - TD;
Ci[WS(csi, 6)] = KP951056516 * (FNMS(KP618033988, TE, Tt));
Ci[WS(csi, 2)] = KP951056516 * (FMA(KP618033988, Tt, TE));
TR = TP - TQ;
TU = TS - TT;
Ci[WS(csi, 8)] = -(KP951056516 * (FNMS(KP618033988, TU, TR)));
Ci[WS(csi, 4)] = KP951056516 * (FMA(KP618033988, TR, TU));
}
{
E T10, TY, TZ, TO, TM, TN;
T10 = TW - TX;
TY = TW + TX;
TZ = FNMS(KP250000000, TY, TV);
Cr[WS(csr, 4)] = FMA(KP559016994, T10, TZ);
Cr[0] = TV + TY;
Cr[WS(csr, 8)] = FNMS(KP559016994, T10, TZ);
TO = TK - TL;
TM = TK + TL;
TN = FNMS(KP250000000, TM, TJ);
Cr[WS(csr, 2)] = FNMS(KP559016994, TO, TN);
Cr[WS(csr, 10)] = TJ + TM;
Cr[WS(csr, 6)] = FMA(KP559016994, TO, TN);
}
{
E T1a, T1c, T13, T1b, T11, T12;
T1a = FMA(KP618033988, T19, T16);
T1c = FNMS(KP618033988, T16, T19);
T11 = FNMS(KP250000000, Ti, T3);
T12 = Ta - Th;
T13 = FMA(KP559016994, T12, T11);
T1b = FNMS(KP559016994, T12, T11);
Cr[WS(csr, 9)] = FNMS(KP951056516, T1a, T13);
Cr[WS(csr, 7)] = FMA(KP951056516, T1c, T1b);
Cr[WS(csr, 1)] = FMA(KP951056516, T1a, T13);
Cr[WS(csr, 3)] = FNMS(KP951056516, T1c, T1b);
}
{
E T1m, T1o, T1j, T1n, T1h, T1i;
T1m = FMA(KP618033988, T1l, T1k);
T1o = FNMS(KP618033988, T1k, T1l);
T1h = FMA(KP250000000, T1g, T1d);
T1i = T1e - T1f;
T1j = FNMS(KP559016994, T1i, T1h);
T1n = FMA(KP559016994, T1i, T1h);
Ci[WS(csi, 1)] = -(FMA(KP951056516, T1m, T1j));
Ci[WS(csi, 7)] = FMA(KP951056516, T1o, T1n);
Ci[WS(csi, 9)] = FMS(KP951056516, T1m, T1j);
Ci[WS(csi, 3)] = FNMS(KP951056516, T1o, T1n);
}
}
}
}
static const kr2c_desc desc = { 20, "r2cf_20", { 58, 4, 28, 0 }, &GENUS };
void X(codelet_r2cf_20) (planner *p) { X(kr2c_register) (p, r2cf_20, &desc);
}
#else
/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cf_20 -include rdft/scalar/r2cf.h */
/*
* This function contains 86 FP additions, 24 FP multiplications,
* (or, 74 additions, 12 multiplications, 12 fused multiply/add),
* 51 stack variables, 4 constants, and 40 memory accesses
*/
#include "rdft/scalar/r2cf.h"
static void r2cf_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
DK(KP587785252, +0.587785252292473129168705954639072768597652438);
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
E T3, T1m, TF, T17, Ts, TM, TN, Tz, Ta, Th, Ti, T1g, T1h, T1k, T10;
E T13, T19, TG, TH, TI, T1d, T1e, T1j, TT, TW, T18;
{
E T1, T2, T15, TD, TE, T16;
T1 = R0[0];
T2 = R0[WS(rs, 5)];
T15 = T1 + T2;
TD = R1[WS(rs, 7)];
TE = R1[WS(rs, 2)];
T16 = TE + TD;
T3 = T1 - T2;
T1m = T15 + T16;
TF = TD - TE;
T17 = T15 - T16;
}
{
E T6, TU, Tv, T12, Ty, TZ, T9, TR, Td, TY, To, TS, Tr, TV, Tg;
E T11;
{
E T4, T5, Tt, Tu;
T4 = R0[WS(rs, 2)];
T5 = R0[WS(rs, 7)];
T6 = T4 - T5;
TU = T4 + T5;
Tt = R1[WS(rs, 8)];
Tu = R1[WS(rs, 3)];
Tv = Tt - Tu;
T12 = Tt + Tu;
}
{
E Tw, Tx, T7, T8;
Tw = R1[WS(rs, 6)];
Tx = R1[WS(rs, 1)];
Ty = Tw - Tx;
TZ = Tw + Tx;
T7 = R0[WS(rs, 8)];
T8 = R0[WS(rs, 3)];
T9 = T7 - T8;
TR = T7 + T8;
}
{
E Tb, Tc, Tm, Tn;
Tb = R0[WS(rs, 4)];
Tc = R0[WS(rs, 9)];
Td = Tb - Tc;
TY = Tb + Tc;
Tm = R1[0];
Tn = R1[WS(rs, 5)];
To = Tm - Tn;
TS = Tm + Tn;
}
{
E Tp, Tq, Te, Tf;
Tp = R1[WS(rs, 4)];
Tq = R1[WS(rs, 9)];
Tr = Tp - Tq;
TV = Tp + Tq;
Te = R0[WS(rs, 6)];
Tf = R0[WS(rs, 1)];
Tg = Te - Tf;
T11 = Te + Tf;
}
Ts = To - Tr;
TM = T6 - T9;
TN = Td - Tg;
Tz = Tv - Ty;
Ta = T6 + T9;
Th = Td + Tg;
Ti = Ta + Th;
T1g = TY + TZ;
T1h = T11 + T12;
T1k = T1g + T1h;
T10 = TY - TZ;
T13 = T11 - T12;
T19 = T10 + T13;
TG = Tr + To;
TH = Ty + Tv;
TI = TG + TH;
T1d = TU + TV;
T1e = TR + TS;
T1j = T1d + T1e;
TT = TR - TS;
TW = TU - TV;
T18 = TW + TT;
}
Cr[WS(csr, 5)] = T3 + Ti;
Ci[WS(csi, 5)] = TF - TI;
{
E TX, T14, T1f, T1i;
TX = TT - TW;
T14 = T10 - T13;
Ci[WS(csi, 6)] = FNMS(KP587785252, T14, KP951056516 * TX);
Ci[WS(csi, 2)] = FMA(KP587785252, TX, KP951056516 * T14);
T1f = T1d - T1e;
T1i = T1g - T1h;
Ci[WS(csi, 8)] = FNMS(KP951056516, T1i, KP587785252 * T1f);
Ci[WS(csi, 4)] = FMA(KP951056516, T1f, KP587785252 * T1i);
}
{
E T1l, T1n, T1o, T1c, T1a, T1b;
T1l = KP559016994 * (T1j - T1k);
T1n = T1j + T1k;
T1o = FNMS(KP250000000, T1n, T1m);
Cr[WS(csr, 4)] = T1l + T1o;
Cr[0] = T1m + T1n;
Cr[WS(csr, 8)] = T1o - T1l;
T1c = KP559016994 * (T18 - T19);
T1a = T18 + T19;
T1b = FNMS(KP250000000, T1a, T17);
Cr[WS(csr, 2)] = T1b - T1c;
Cr[WS(csr, 10)] = T17 + T1a;
Cr[WS(csr, 6)] = T1c + T1b;
}
{
E TA, TC, Tl, TB, Tj, Tk;
TA = FMA(KP951056516, Ts, KP587785252 * Tz);
TC = FNMS(KP587785252, Ts, KP951056516 * Tz);
Tj = KP559016994 * (Ta - Th);
Tk = FNMS(KP250000000, Ti, T3);
Tl = Tj + Tk;
TB = Tk - Tj;
Cr[WS(csr, 9)] = Tl - TA;
Cr[WS(csr, 7)] = TB + TC;
Cr[WS(csr, 1)] = Tl + TA;
Cr[WS(csr, 3)] = TB - TC;
}
{
E TO, TQ, TL, TP, TJ, TK;
TO = FMA(KP951056516, TM, KP587785252 * TN);
TQ = FNMS(KP587785252, TM, KP951056516 * TN);
TJ = FMA(KP250000000, TI, TF);
TK = KP559016994 * (TH - TG);
TL = TJ + TK;
TP = TK - TJ;
Ci[WS(csi, 1)] = TL - TO;
Ci[WS(csi, 7)] = TQ + TP;
Ci[WS(csi, 9)] = TO + TL;
Ci[WS(csi, 3)] = TP - TQ;
}
}
}
}
static const kr2c_desc desc = { 20, "r2cf_20", { 74, 12, 12, 0 }, &GENUS };
void X(codelet_r2cf_20) (planner *p) { X(kr2c_register) (p, r2cf_20, &desc);
}
#endif