furnace/extern/fftw/rdft/scalar/r2cf/r2cfII_16.c

313 lines
9.8 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:24 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 16 -name r2cfII_16 -dft-II -include rdft/scalar/r2cfII.h */
/*
* This function contains 66 FP additions, 48 FP multiplications,
* (or, 18 additions, 0 multiplications, 48 fused multiply/add),
* 32 stack variables, 7 constants, and 32 memory accesses
*/
#include "rdft/scalar/r2cfII.h"
static void r2cfII_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP980785280, +0.980785280403230449126182236134239036973933731);
DK(KP198912367, +0.198912367379658006911597622644676228597850501);
DK(KP831469612, +0.831469612302545237078788377617905756738560812);
DK(KP668178637, +0.668178637919298919997757686523080761552472251);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) {
E T5, TZ, TB, TT, Tr, TK, Tu, TJ, Ti, TH, Tl, TG, Tc, T10, TE;
E TU;
{
E T1, TR, T4, TS, T2, T3;
T1 = R0[0];
TR = R0[WS(rs, 4)];
T2 = R0[WS(rs, 2)];
T3 = R0[WS(rs, 6)];
T4 = T2 - T3;
TS = T2 + T3;
T5 = FNMS(KP707106781, T4, T1);
TZ = FNMS(KP707106781, TS, TR);
TB = FMA(KP707106781, T4, T1);
TT = FMA(KP707106781, TS, TR);
}
{
E Tn, Ts, Tq, Tt, To, Tp;
Tn = R1[WS(rs, 7)];
Ts = R1[WS(rs, 3)];
To = R1[WS(rs, 1)];
Tp = R1[WS(rs, 5)];
Tq = To - Tp;
Tt = To + Tp;
Tr = FMA(KP707106781, Tq, Tn);
TK = FMA(KP707106781, Tt, Ts);
Tu = FNMS(KP707106781, Tt, Ts);
TJ = FMS(KP707106781, Tq, Tn);
}
{
E Te, Tj, Th, Tk, Tf, Tg;
Te = R1[0];
Tj = R1[WS(rs, 4)];
Tf = R1[WS(rs, 2)];
Tg = R1[WS(rs, 6)];
Th = Tf - Tg;
Tk = Tf + Tg;
Ti = FNMS(KP707106781, Th, Te);
TH = FMA(KP707106781, Tk, Tj);
Tl = FNMS(KP707106781, Tk, Tj);
TG = FMA(KP707106781, Th, Te);
}
{
E T8, TC, Tb, TD;
{
E T6, T7, T9, Ta;
T6 = R0[WS(rs, 5)];
T7 = R0[WS(rs, 1)];
T8 = FMA(KP414213562, T7, T6);
TC = FNMS(KP414213562, T6, T7);
T9 = R0[WS(rs, 3)];
Ta = R0[WS(rs, 7)];
Tb = FMA(KP414213562, Ta, T9);
TD = FMS(KP414213562, T9, Ta);
}
Tc = T8 - Tb;
T10 = TD - TC;
TE = TC + TD;
TU = T8 + Tb;
}
{
E Td, T13, Tw, T14, Tm, Tv;
Td = FMA(KP923879532, Tc, T5);
T13 = FNMS(KP923879532, T10, TZ);
Tm = FMA(KP668178637, Tl, Ti);
Tv = FMA(KP668178637, Tu, Tr);
Tw = Tm - Tv;
T14 = Tm + Tv;
Cr[WS(csr, 6)] = FNMS(KP831469612, Tw, Td);
Ci[WS(csi, 5)] = FNMS(KP831469612, T14, T13);
Cr[WS(csr, 1)] = FMA(KP831469612, Tw, Td);
Ci[WS(csi, 2)] = -(FMA(KP831469612, T14, T13));
}
{
E Tx, T11, TA, T12, Ty, Tz;
Tx = FNMS(KP923879532, Tc, T5);
T11 = FMA(KP923879532, T10, TZ);
Ty = FNMS(KP668178637, Tr, Tu);
Tz = FNMS(KP668178637, Ti, Tl);
TA = Ty - Tz;
T12 = Tz + Ty;
Cr[WS(csr, 5)] = FNMS(KP831469612, TA, Tx);
Ci[WS(csi, 1)] = FMA(KP831469612, T12, T11);
Cr[WS(csr, 2)] = FMA(KP831469612, TA, Tx);
Ci[WS(csi, 6)] = FMS(KP831469612, T12, T11);
}
{
E TF, TX, TM, TY, TI, TL;
TF = FMA(KP923879532, TE, TB);
TX = FNMS(KP923879532, TU, TT);
TI = FNMS(KP198912367, TH, TG);
TL = FMA(KP198912367, TK, TJ);
TM = TI + TL;
TY = TL - TI;
Cr[WS(csr, 7)] = FNMS(KP980785280, TM, TF);
Ci[WS(csi, 3)] = FMA(KP980785280, TY, TX);
Cr[0] = FMA(KP980785280, TM, TF);
Ci[WS(csi, 4)] = FMS(KP980785280, TY, TX);
}
{
E TN, TV, TQ, TW, TO, TP;
TN = FNMS(KP923879532, TE, TB);
TV = FMA(KP923879532, TU, TT);
TO = FMA(KP198912367, TG, TH);
TP = FNMS(KP198912367, TJ, TK);
TQ = TO - TP;
TW = TO + TP;
Cr[WS(csr, 4)] = FNMS(KP980785280, TQ, TN);
Ci[WS(csi, 7)] = FNMS(KP980785280, TW, TV);
Cr[WS(csr, 3)] = FMA(KP980785280, TQ, TN);
Ci[0] = -(FMA(KP980785280, TW, TV));
}
}
}
}
static const kr2c_desc desc = { 16, "r2cfII_16", { 18, 0, 48, 0 }, &GENUS };
void X(codelet_r2cfII_16) (planner *p) { X(kr2c_register) (p, r2cfII_16, &desc);
}
#else
/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 16 -name r2cfII_16 -dft-II -include rdft/scalar/r2cfII.h */
/*
* This function contains 66 FP additions, 30 FP multiplications,
* (or, 54 additions, 18 multiplications, 12 fused multiply/add),
* 32 stack variables, 7 constants, and 32 memory accesses
*/
#include "rdft/scalar/r2cfII.h"
static void r2cfII_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP555570233, +0.555570233019602224742830813948532874374937191);
DK(KP831469612, +0.831469612302545237078788377617905756738560812);
DK(KP980785280, +0.980785280403230449126182236134239036973933731);
DK(KP195090322, +0.195090322016128267848284868477022240927691618);
DK(KP382683432, +0.382683432365089771728459984030398866761344562);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) {
E T5, T11, TB, TV, Tr, TK, Tu, TJ, Ti, TH, Tl, TG, Tc, T10, TE;
E TS;
{
E T1, TU, T4, TT, T2, T3;
T1 = R0[0];
TU = R0[WS(rs, 4)];
T2 = R0[WS(rs, 2)];
T3 = R0[WS(rs, 6)];
T4 = KP707106781 * (T2 - T3);
TT = KP707106781 * (T2 + T3);
T5 = T1 + T4;
T11 = TU - TT;
TB = T1 - T4;
TV = TT + TU;
}
{
E Tq, Tt, Tp, Ts, Tn, To;
Tq = R1[WS(rs, 7)];
Tt = R1[WS(rs, 3)];
Tn = R1[WS(rs, 1)];
To = R1[WS(rs, 5)];
Tp = KP707106781 * (Tn - To);
Ts = KP707106781 * (Tn + To);
Tr = Tp - Tq;
TK = Tt - Ts;
Tu = Ts + Tt;
TJ = Tp + Tq;
}
{
E Te, Tk, Th, Tj, Tf, Tg;
Te = R1[0];
Tk = R1[WS(rs, 4)];
Tf = R1[WS(rs, 2)];
Tg = R1[WS(rs, 6)];
Th = KP707106781 * (Tf - Tg);
Tj = KP707106781 * (Tf + Tg);
Ti = Te + Th;
TH = Tk - Tj;
Tl = Tj + Tk;
TG = Te - Th;
}
{
E T8, TC, Tb, TD;
{
E T6, T7, T9, Ta;
T6 = R0[WS(rs, 1)];
T7 = R0[WS(rs, 5)];
T8 = FNMS(KP382683432, T7, KP923879532 * T6);
TC = FMA(KP382683432, T6, KP923879532 * T7);
T9 = R0[WS(rs, 3)];
Ta = R0[WS(rs, 7)];
Tb = FNMS(KP923879532, Ta, KP382683432 * T9);
TD = FMA(KP923879532, T9, KP382683432 * Ta);
}
Tc = T8 + Tb;
T10 = Tb - T8;
TE = TC - TD;
TS = TC + TD;
}
{
E Td, TW, Tw, TR, Tm, Tv;
Td = T5 - Tc;
TW = TS + TV;
Tm = FMA(KP195090322, Ti, KP980785280 * Tl);
Tv = FNMS(KP980785280, Tu, KP195090322 * Tr);
Tw = Tm + Tv;
TR = Tv - Tm;
Cr[WS(csr, 4)] = Td - Tw;
Ci[WS(csi, 7)] = TR + TW;
Cr[WS(csr, 3)] = Td + Tw;
Ci[0] = TR - TW;
}
{
E Tx, TY, TA, TX, Ty, Tz;
Tx = T5 + Tc;
TY = TV - TS;
Ty = FNMS(KP195090322, Tl, KP980785280 * Ti);
Tz = FMA(KP980785280, Tr, KP195090322 * Tu);
TA = Ty + Tz;
TX = Tz - Ty;
Cr[WS(csr, 7)] = Tx - TA;
Ci[WS(csi, 3)] = TX + TY;
Cr[0] = Tx + TA;
Ci[WS(csi, 4)] = TX - TY;
}
{
E TF, T12, TM, TZ, TI, TL;
TF = TB + TE;
T12 = T10 - T11;
TI = FMA(KP831469612, TG, KP555570233 * TH);
TL = FMA(KP831469612, TJ, KP555570233 * TK);
TM = TI - TL;
TZ = TI + TL;
Cr[WS(csr, 6)] = TF - TM;
Ci[WS(csi, 2)] = T12 - TZ;
Cr[WS(csr, 1)] = TF + TM;
Ci[WS(csi, 5)] = -(TZ + T12);
}
{
E TN, T14, TQ, T13, TO, TP;
TN = TB - TE;
T14 = T10 + T11;
TO = FNMS(KP555570233, TJ, KP831469612 * TK);
TP = FNMS(KP555570233, TG, KP831469612 * TH);
TQ = TO - TP;
T13 = TP + TO;
Cr[WS(csr, 5)] = TN - TQ;
Ci[WS(csi, 1)] = T13 + T14;
Cr[WS(csr, 2)] = TN + TQ;
Ci[WS(csi, 6)] = T13 - T14;
}
}
}
}
static const kr2c_desc desc = { 16, "r2cfII_16", { 54, 18, 12, 0 }, &GENUS };
void X(codelet_r2cfII_16) (planner *p) { X(kr2c_register) (p, r2cfII_16, &desc);
}
#endif