furnace/extern/fftw/rdft/scalar/r2cf/hc2cfdft_10.c

547 lines
15 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:36 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hc2cfdft_10 -include rdft/scalar/hc2cf.h */
/*
* This function contains 122 FP additions, 92 FP multiplications,
* (or, 68 additions, 38 multiplications, 54 fused multiply/add),
* 81 stack variables, 5 constants, and 40 memory accesses
*/
#include "rdft/scalar/hc2cf.h"
static void hc2cfdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
E T3, T1u, Td, T1w, T1S, T2f, T14, T1p, T1j, T1q, T1N, T2e, TQ, T2i, T1n;
E T1H, Tz, T2h, T1m, T1C;
{
E T1, T2, T1h, Tc, TW, T1c, T1d, T1b, T1f, T1g, T1Q, T7, TV, T1J, TS;
E TU, Ts, Tx, T19, T18, T1O, T15, T17, Tt, T1A, Ti, Tn, TE, TD, T1F;
E TA, TC, Tj, T1y, TJ, TO, T12, T11, T1L, TY, T10, TK, T1D;
{
E Ta, Tb, T1e, T5, T6, TT;
T1 = Ip[0];
T2 = Im[0];
T1h = T1 + T2;
Ta = Rp[WS(rs, 2)];
Tb = Rm[WS(rs, 2)];
Tc = Ta - Tb;
TW = Ta + Tb;
T1c = Rm[0];
T1d = Rp[0];
T1e = T1c - T1d;
T1b = W[0];
T1f = T1b * T1e;
T1g = W[1];
T1Q = T1g * T1e;
T5 = Ip[WS(rs, 2)];
T6 = Im[WS(rs, 2)];
TT = T5 - T6;
T7 = T5 + T6;
TV = W[7];
T1J = TV * TT;
TS = W[6];
TU = TS * TT;
{
E Tq, Tr, T16, Tv, Tw, Tp;
Tq = Rm[WS(rs, 3)];
Tr = Rp[WS(rs, 3)];
Ts = Tq - Tr;
Tv = Ip[WS(rs, 3)];
Tw = Im[WS(rs, 3)];
Tx = Tv + Tw;
T16 = Tv - Tw;
T19 = Tr + Tq;
T18 = W[11];
T1O = T18 * T16;
T15 = W[10];
T17 = T15 * T16;
Tp = W[12];
Tt = Tp * Ts;
T1A = Tp * Tx;
}
{
E Tg, Th, TB, Tl, Tm, Tf;
Tg = Ip[WS(rs, 1)];
Th = Im[WS(rs, 1)];
Ti = Tg - Th;
Tl = Rp[WS(rs, 1)];
Tm = Rm[WS(rs, 1)];
Tn = Tl + Tm;
TB = Tm - Tl;
TE = Tg + Th;
TD = W[5];
T1F = TD * TB;
TA = W[4];
TC = TA * TB;
Tf = W[2];
Tj = Tf * Ti;
T1y = Tf * Tn;
}
{
E TH, TI, TZ, TM, TN, TG;
TH = Ip[WS(rs, 4)];
TI = Im[WS(rs, 4)];
TJ = TH - TI;
TM = Rp[WS(rs, 4)];
TN = Rm[WS(rs, 4)];
TO = TM + TN;
TZ = TN - TM;
T12 = TH + TI;
T11 = W[17];
T1L = T11 * TZ;
TY = W[16];
T10 = TY * TZ;
TG = W[14];
TK = TG * TJ;
T1D = TG * TO;
}
}
{
E T1P, T1R, T1K, T1M;
T3 = T1 - T2;
T1u = T1d + T1c;
{
E T4, T8, T9, T1v;
T4 = W[9];
T8 = T4 * T7;
T9 = W[8];
T1v = T9 * T7;
Td = FMA(T9, Tc, T8);
T1w = FNMS(T4, Tc, T1v);
}
T1P = FMA(T15, T19, T1O);
T1R = FMA(T1b, T1h, T1Q);
T1S = T1P - T1R;
T2f = T1P + T1R;
{
E TX, T13, T1a, T1i;
TX = FNMS(TV, TW, TU);
T13 = FNMS(T11, T12, T10);
T14 = TX + T13;
T1p = T13 - TX;
T1a = FNMS(T18, T19, T17);
T1i = FNMS(T1g, T1h, T1f);
T1j = T1a + T1i;
T1q = T1i - T1a;
}
T1K = FMA(TS, TW, T1J);
T1M = FMA(TY, T12, T1L);
T1N = T1K - T1M;
T2e = T1K + T1M;
{
E TF, T1G, TP, T1E, TL;
TF = FNMS(TD, TE, TC);
T1G = FMA(TA, TE, T1F);
TL = W[15];
TP = FNMS(TL, TO, TK);
T1E = FMA(TL, TJ, T1D);
TQ = TF + TP;
T2i = T1G + T1E;
T1n = TF - TP;
T1H = T1E - T1G;
}
{
E To, T1z, Ty, T1B, Tk, Tu;
Tk = W[3];
To = FNMS(Tk, Tn, Tj);
T1z = FMA(Tk, Ti, T1y);
Tu = W[13];
Ty = FNMS(Tu, Tx, Tt);
T1B = FMA(Tu, Ts, T1A);
Tz = To + Ty;
T2h = T1z + T1B;
T1m = Ty - To;
T1C = T1z - T1B;
}
}
}
{
E T2k, T2m, Te, T1l, T2b, T2c, T2l, T2d;
{
E T2g, T2j, TR, T1k;
T2g = T2e - T2f;
T2j = T2h - T2i;
T2k = FNMS(KP618033988, T2j, T2g);
T2m = FMA(KP618033988, T2g, T2j);
Te = T3 - Td;
TR = Tz + TQ;
T1k = T14 + T1j;
T1l = TR + T1k;
T2b = FNMS(KP250000000, T1l, Te);
T2c = TR - T1k;
}
Ip[0] = KP500000000 * (Te + T1l);
T2l = FMA(KP559016994, T2c, T2b);
Ip[WS(rs, 4)] = KP500000000 * (FMA(KP951056516, T2m, T2l));
Im[WS(rs, 3)] = -(KP500000000 * (FNMS(KP951056516, T2m, T2l)));
T2d = FNMS(KP559016994, T2c, T2b);
Ip[WS(rs, 2)] = KP500000000 * (FMA(KP951056516, T2k, T2d));
Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP951056516, T2k, T2d)));
}
{
E T2w, T2y, T2n, T2q, T2r, T2s, T2x, T2t;
{
E T2u, T2v, T2o, T2p;
T2u = T14 - T1j;
T2v = Tz - TQ;
T2w = FNMS(KP618033988, T2v, T2u);
T2y = FMA(KP618033988, T2u, T2v);
T2n = T1u + T1w;
T2o = T2h + T2i;
T2p = T2e + T2f;
T2q = T2o + T2p;
T2r = FNMS(KP250000000, T2q, T2n);
T2s = T2o - T2p;
}
Rp[0] = KP500000000 * (T2n + T2q);
T2x = FMA(KP559016994, T2s, T2r);
Rp[WS(rs, 4)] = KP500000000 * (FNMS(KP951056516, T2y, T2x));
Rm[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T2y, T2x));
T2t = FNMS(KP559016994, T2s, T2r);
Rp[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T2w, T2t));
Rm[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T2w, T2t));
}
{
E T28, T2a, T1t, T1s, T23, T24, T29, T25;
{
E T26, T27, T1o, T1r;
T26 = T1H - T1C;
T27 = T1S - T1N;
T28 = FMA(KP618033988, T27, T26);
T2a = FNMS(KP618033988, T26, T27);
T1t = Td + T3;
T1o = T1m + T1n;
T1r = T1p + T1q;
T1s = T1o + T1r;
T23 = FMA(KP250000000, T1s, T1t);
T24 = T1r - T1o;
}
Im[WS(rs, 4)] = KP500000000 * (T1s - T1t);
T29 = FNMS(KP559016994, T24, T23);
Ip[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T2a, T29));
Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP951056516, T2a, T29)));
T25 = FMA(KP559016994, T24, T23);
Ip[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T28, T25));
Im[0] = -(KP500000000 * (FNMS(KP951056516, T28, T25)));
}
{
E T20, T22, T1x, T1U, T1V, T1W, T21, T1X;
{
E T1Y, T1Z, T1I, T1T;
T1Y = T1n - T1m;
T1Z = T1q - T1p;
T20 = FMA(KP618033988, T1Z, T1Y);
T22 = FNMS(KP618033988, T1Y, T1Z);
T1x = T1u - T1w;
T1I = T1C + T1H;
T1T = T1N + T1S;
T1U = T1I + T1T;
T1V = FNMS(KP250000000, T1U, T1x);
T1W = T1I - T1T;
}
Rm[WS(rs, 4)] = KP500000000 * (T1x + T1U);
T21 = FNMS(KP559016994, T1W, T1V);
Rp[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T22, T21));
Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T22, T21));
T1X = FMA(KP559016994, T1W, T1V);
Rp[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T20, T1X));
Rm[0] = KP500000000 * (FNMS(KP951056516, T20, T1X));
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 10 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 10, "hc2cfdft_10", twinstr, &GENUS, { 68, 38, 54, 0 } };
void X(codelet_hc2cfdft_10) (planner *p) {
X(khc2c_register) (p, hc2cfdft_10, &desc, HC2C_VIA_DFT);
}
#else
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hc2cfdft_10 -include rdft/scalar/hc2cf.h */
/*
* This function contains 122 FP additions, 68 FP multiplications,
* (or, 92 additions, 38 multiplications, 30 fused multiply/add),
* 62 stack variables, 5 constants, and 40 memory accesses
*/
#include "rdft/scalar/hc2cf.h"
static void hc2cfdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP293892626, +0.293892626146236564584352977319536384298826219);
DK(KP475528258, +0.475528258147576786058219666689691071702849317);
DK(KP125000000, +0.125000000000000000000000000000000000000000000);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
DK(KP279508497, +0.279508497187473712051146708591409529430077295);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
E Tw, TL, TM, T1W, T1X, T27, T1Z, T20, T26, TX, T1a, T1b, T1d, T1e, T1f;
E T1q, T1t, T1u, T1x, T1A, T1B, T1g, T1h, T1i, Td, T25, T1k, T1F;
{
E T3, T1D, T19, T1z, T7, Tb, TR, T1v, Tm, T1o, TK, T1s, Tv, T1p, T12;
E T1y, TF, T1r, TW, T1w;
{
E T1, T2, T18, T14, T15, T16, T13, T17;
T1 = Ip[0];
T2 = Im[0];
T18 = T1 + T2;
T14 = Rm[0];
T15 = Rp[0];
T16 = T14 - T15;
T3 = T1 - T2;
T1D = T15 + T14;
T13 = W[0];
T17 = W[1];
T19 = FNMS(T17, T18, T13 * T16);
T1z = FMA(T17, T16, T13 * T18);
}
{
E T5, T6, TO, T9, Ta, TQ, TN, TP;
T5 = Ip[WS(rs, 2)];
T6 = Im[WS(rs, 2)];
TO = T5 - T6;
T9 = Rp[WS(rs, 2)];
Ta = Rm[WS(rs, 2)];
TQ = T9 + Ta;
T7 = T5 + T6;
Tb = T9 - Ta;
TN = W[6];
TP = W[7];
TR = FNMS(TP, TQ, TN * TO);
T1v = FMA(TP, TO, TN * TQ);
}
{
E Th, TJ, Tl, TH;
{
E Tf, Tg, Tj, Tk;
Tf = Ip[WS(rs, 1)];
Tg = Im[WS(rs, 1)];
Th = Tf - Tg;
TJ = Tf + Tg;
Tj = Rp[WS(rs, 1)];
Tk = Rm[WS(rs, 1)];
Tl = Tj + Tk;
TH = Tj - Tk;
}
{
E Te, Ti, TG, TI;
Te = W[2];
Ti = W[3];
Tm = FNMS(Ti, Tl, Te * Th);
T1o = FMA(Te, Tl, Ti * Th);
TG = W[4];
TI = W[5];
TK = FMA(TG, TH, TI * TJ);
T1s = FNMS(TI, TH, TG * TJ);
}
}
{
E Tq, TZ, Tu, T11;
{
E To, Tp, Ts, Tt;
To = Ip[WS(rs, 3)];
Tp = Im[WS(rs, 3)];
Tq = To + Tp;
TZ = To - Tp;
Ts = Rp[WS(rs, 3)];
Tt = Rm[WS(rs, 3)];
Tu = Ts - Tt;
T11 = Ts + Tt;
}
{
E Tn, Tr, TY, T10;
Tn = W[13];
Tr = W[12];
Tv = FMA(Tn, Tq, Tr * Tu);
T1p = FNMS(Tn, Tu, Tr * Tq);
TY = W[10];
T10 = W[11];
T12 = FNMS(T10, T11, TY * TZ);
T1y = FMA(T10, TZ, TY * T11);
}
}
{
E TA, TV, TE, TT;
{
E Ty, Tz, TC, TD;
Ty = Ip[WS(rs, 4)];
Tz = Im[WS(rs, 4)];
TA = Ty - Tz;
TV = Ty + Tz;
TC = Rp[WS(rs, 4)];
TD = Rm[WS(rs, 4)];
TE = TC + TD;
TT = TC - TD;
}
{
E Tx, TB, TS, TU;
Tx = W[14];
TB = W[15];
TF = FNMS(TB, TE, Tx * TA);
T1r = FMA(Tx, TE, TB * TA);
TS = W[16];
TU = W[17];
TW = FMA(TS, TT, TU * TV);
T1w = FNMS(TU, TT, TS * TV);
}
}
Tw = Tm - Tv;
TL = TF - TK;
TM = Tw + TL;
T1W = T1v + T1w;
T1X = T1y + T1z;
T27 = T1W + T1X;
T1Z = T1o + T1p;
T20 = T1s + T1r;
T26 = T1Z + T20;
TX = TR - TW;
T1a = T12 + T19;
T1b = TX + T1a;
T1d = T19 - T12;
T1e = TR + TW;
T1f = T1d - T1e;
T1q = T1o - T1p;
T1t = T1r - T1s;
T1u = T1q + T1t;
T1x = T1v - T1w;
T1A = T1y - T1z;
T1B = T1x + T1A;
T1g = Tm + Tv;
T1h = TK + TF;
T1i = T1g + T1h;
{
E Tc, T1E, T4, T8;
T4 = W[9];
T8 = W[8];
Tc = FMA(T4, T7, T8 * Tb);
T1E = FNMS(T4, Tb, T8 * T7);
Td = T3 - Tc;
T25 = T1D + T1E;
T1k = Tc + T3;
T1F = T1D - T1E;
}
}
{
E T1U, T1c, T1T, T22, T24, T1Y, T21, T23, T1V;
T1U = KP279508497 * (TM - T1b);
T1c = TM + T1b;
T1T = FNMS(KP125000000, T1c, KP500000000 * Td);
T1Y = T1W - T1X;
T21 = T1Z - T20;
T22 = FNMS(KP293892626, T21, KP475528258 * T1Y);
T24 = FMA(KP475528258, T21, KP293892626 * T1Y);
Ip[0] = KP500000000 * (Td + T1c);
T23 = T1U + T1T;
Ip[WS(rs, 4)] = T23 + T24;
Im[WS(rs, 3)] = T24 - T23;
T1V = T1T - T1U;
Ip[WS(rs, 2)] = T1V + T22;
Im[WS(rs, 1)] = T22 - T1V;
}
{
E T2a, T28, T29, T2e, T2g, T2c, T2d, T2f, T2b;
T2a = KP279508497 * (T26 - T27);
T28 = T26 + T27;
T29 = FNMS(KP125000000, T28, KP500000000 * T25);
T2c = TX - T1a;
T2d = Tw - TL;
T2e = FNMS(KP293892626, T2d, KP475528258 * T2c);
T2g = FMA(KP475528258, T2d, KP293892626 * T2c);
Rp[0] = KP500000000 * (T25 + T28);
T2f = T2a + T29;
Rp[WS(rs, 4)] = T2f - T2g;
Rm[WS(rs, 3)] = T2g + T2f;
T2b = T29 - T2a;
Rp[WS(rs, 2)] = T2b - T2e;
Rm[WS(rs, 1)] = T2e + T2b;
}
{
E T1M, T1j, T1L, T1Q, T1S, T1O, T1P, T1R, T1N;
T1M = KP279508497 * (T1i + T1f);
T1j = T1f - T1i;
T1L = FMA(KP500000000, T1k, KP125000000 * T1j);
T1O = T1A - T1x;
T1P = T1q - T1t;
T1Q = FNMS(KP475528258, T1P, KP293892626 * T1O);
T1S = FMA(KP293892626, T1P, KP475528258 * T1O);
Im[WS(rs, 4)] = KP500000000 * (T1j - T1k);
T1R = T1L - T1M;
Ip[WS(rs, 3)] = T1R + T1S;
Im[WS(rs, 2)] = T1S - T1R;
T1N = T1L + T1M;
Ip[WS(rs, 1)] = T1N + T1Q;
Im[0] = T1Q - T1N;
}
{
E T1C, T1G, T1H, T1n, T1J, T1l, T1m, T1K, T1I;
T1C = KP279508497 * (T1u - T1B);
T1G = T1u + T1B;
T1H = FNMS(KP125000000, T1G, KP500000000 * T1F);
T1l = T1g - T1h;
T1m = T1e + T1d;
T1n = FMA(KP475528258, T1l, KP293892626 * T1m);
T1J = FNMS(KP293892626, T1l, KP475528258 * T1m);
Rm[WS(rs, 4)] = KP500000000 * (T1F + T1G);
T1K = T1H - T1C;
Rp[WS(rs, 3)] = T1J + T1K;
Rm[WS(rs, 2)] = T1K - T1J;
T1I = T1C + T1H;
Rp[WS(rs, 1)] = T1n + T1I;
Rm[0] = T1I - T1n;
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 10 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 10, "hc2cfdft_10", twinstr, &GENUS, { 92, 38, 30, 0 } };
void X(codelet_hc2cfdft_10) (planner *p) {
X(khc2c_register) (p, hc2cfdft_10, &desc, HC2C_VIA_DFT);
}
#endif