furnace/extern/fftw/rdft/scalar/r2cf/hc2cf2_4.c

201 lines
5.3 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:34 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 4 -dit -name hc2cf2_4 -include rdft/scalar/hc2cf.h */
/*
* This function contains 24 FP additions, 16 FP multiplications,
* (or, 16 additions, 8 multiplications, 8 fused multiply/add),
* 21 stack variables, 0 constants, and 16 memory accesses
*/
#include "rdft/scalar/hc2cf.h"
static void hc2cf2_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
{
INT m;
for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 4, MAKE_VOLATILE_STRIDE(16, rs)) {
E T2, T6, T3, T5, T7, Tb, T4, Ta;
T2 = W[0];
T6 = W[3];
T3 = W[2];
T4 = T2 * T3;
Ta = T2 * T6;
T5 = W[1];
T7 = FMA(T5, T6, T4);
Tb = FNMS(T5, T3, Ta);
{
E T1, Tx, Td, Tw, Ti, Tq, Tm, Ts;
T1 = Rp[0];
Tx = Rm[0];
{
E T8, T9, Tc, Tv;
T8 = Rp[WS(rs, 1)];
T9 = T7 * T8;
Tc = Rm[WS(rs, 1)];
Tv = T7 * Tc;
Td = FMA(Tb, Tc, T9);
Tw = FNMS(Tb, T8, Tv);
}
{
E Tf, Tg, Th, Tp;
Tf = Ip[0];
Tg = T2 * Tf;
Th = Im[0];
Tp = T2 * Th;
Ti = FMA(T5, Th, Tg);
Tq = FNMS(T5, Tf, Tp);
}
{
E Tj, Tk, Tl, Tr;
Tj = Ip[WS(rs, 1)];
Tk = T3 * Tj;
Tl = Im[WS(rs, 1)];
Tr = T3 * Tl;
Tm = FMA(T6, Tl, Tk);
Ts = FNMS(T6, Tj, Tr);
}
{
E Te, Tn, Tu, Ty;
Te = T1 + Td;
Tn = Ti + Tm;
Rm[WS(rs, 1)] = Te - Tn;
Rp[0] = Te + Tn;
Tu = Tq + Ts;
Ty = Tw + Tx;
Im[WS(rs, 1)] = Tu - Ty;
Ip[0] = Tu + Ty;
}
{
E To, Tt, Tz, TA;
To = T1 - Td;
Tt = Tq - Ts;
Rm[0] = To - Tt;
Rp[WS(rs, 1)] = To + Tt;
Tz = Tm - Ti;
TA = Tx - Tw;
Im[0] = Tz - TA;
Ip[WS(rs, 1)] = Tz + TA;
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_CEXP, 1, 1 },
{ TW_CEXP, 1, 3 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 4, "hc2cf2_4", twinstr, &GENUS, { 16, 8, 8, 0 } };
void X(codelet_hc2cf2_4) (planner *p) {
X(khc2c_register) (p, hc2cf2_4, &desc, HC2C_VIA_RDFT);
}
#else
/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 4 -dit -name hc2cf2_4 -include rdft/scalar/hc2cf.h */
/*
* This function contains 24 FP additions, 16 FP multiplications,
* (or, 16 additions, 8 multiplications, 8 fused multiply/add),
* 21 stack variables, 0 constants, and 16 memory accesses
*/
#include "rdft/scalar/hc2cf.h"
static void hc2cf2_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
{
INT m;
for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 4, MAKE_VOLATILE_STRIDE(16, rs)) {
E T2, T4, T3, T5, T6, T8;
T2 = W[0];
T4 = W[1];
T3 = W[2];
T5 = W[3];
T6 = FMA(T2, T3, T4 * T5);
T8 = FNMS(T4, T3, T2 * T5);
{
E T1, Tp, Ta, To, Te, Tk, Th, Tl, T7, T9;
T1 = Rp[0];
Tp = Rm[0];
T7 = Rp[WS(rs, 1)];
T9 = Rm[WS(rs, 1)];
Ta = FMA(T6, T7, T8 * T9);
To = FNMS(T8, T7, T6 * T9);
{
E Tc, Td, Tf, Tg;
Tc = Ip[0];
Td = Im[0];
Te = FMA(T2, Tc, T4 * Td);
Tk = FNMS(T4, Tc, T2 * Td);
Tf = Ip[WS(rs, 1)];
Tg = Im[WS(rs, 1)];
Th = FMA(T3, Tf, T5 * Tg);
Tl = FNMS(T5, Tf, T3 * Tg);
}
{
E Tb, Ti, Tn, Tq;
Tb = T1 + Ta;
Ti = Te + Th;
Rm[WS(rs, 1)] = Tb - Ti;
Rp[0] = Tb + Ti;
Tn = Tk + Tl;
Tq = To + Tp;
Im[WS(rs, 1)] = Tn - Tq;
Ip[0] = Tn + Tq;
}
{
E Tj, Tm, Tr, Ts;
Tj = T1 - Ta;
Tm = Tk - Tl;
Rm[0] = Tj - Tm;
Rp[WS(rs, 1)] = Tj + Tm;
Tr = Th - Te;
Ts = Tp - To;
Im[0] = Tr - Ts;
Ip[WS(rs, 1)] = Tr + Ts;
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_CEXP, 1, 1 },
{ TW_CEXP, 1, 3 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 4, "hc2cf2_4", twinstr, &GENUS, { 16, 8, 8, 0 } };
void X(codelet_hc2cf2_4) (planner *p) {
X(khc2c_register) (p, hc2cf2_4, &desc, HC2C_VIA_RDFT);
}
#endif