furnace/extern/fftw/rdft/scalar/r2cb/hb_3.c

167 lines
4.8 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:50 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 3 -dif -name hb_3 -include rdft/scalar/hb.h */
/*
* This function contains 16 FP additions, 14 FP multiplications,
* (or, 6 additions, 4 multiplications, 10 fused multiply/add),
* 17 stack variables, 2 constants, and 12 memory accesses
*/
#include "rdft/scalar/hb.h"
static void hb_3(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(6, rs)) {
E T1, T4, T6, Tg, Td, Te, T9, Tf;
{
E T2, T3, T7, T8;
T1 = cr[0];
T2 = cr[WS(rs, 1)];
T3 = ci[0];
T4 = T2 + T3;
T6 = FNMS(KP500000000, T4, T1);
Tg = T2 - T3;
Td = ci[WS(rs, 2)];
T7 = ci[WS(rs, 1)];
T8 = cr[WS(rs, 2)];
Te = T7 - T8;
T9 = T7 + T8;
Tf = FNMS(KP500000000, Te, Td);
}
cr[0] = T1 + T4;
ci[0] = Td + Te;
{
E Th, T5, Tb, Tc, Ti, Ta;
Th = FMA(KP866025403, Tg, Tf);
Ta = FNMS(KP866025403, T9, T6);
T5 = W[0];
Tb = T5 * Ta;
Tc = W[1];
Ti = Tc * Ta;
cr[WS(rs, 1)] = FNMS(Tc, Th, Tb);
ci[WS(rs, 1)] = FMA(T5, Th, Ti);
}
{
E Tn, Tj, Tl, Tm, To, Tk;
Tn = FNMS(KP866025403, Tg, Tf);
Tk = FMA(KP866025403, T9, T6);
Tj = W[2];
Tl = Tj * Tk;
Tm = W[3];
To = Tm * Tk;
cr[WS(rs, 2)] = FNMS(Tm, Tn, Tl);
ci[WS(rs, 2)] = FMA(Tj, Tn, To);
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 3 },
{ TW_NEXT, 1, 0 }
};
static const hc2hc_desc desc = { 3, "hb_3", twinstr, &GENUS, { 6, 4, 10, 0 } };
void X(codelet_hb_3) (planner *p) {
X(khc2hc_register) (p, hb_3, &desc);
}
#else
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 3 -dif -name hb_3 -include rdft/scalar/hb.h */
/*
* This function contains 16 FP additions, 12 FP multiplications,
* (or, 10 additions, 6 multiplications, 6 fused multiply/add),
* 15 stack variables, 2 constants, and 12 memory accesses
*/
#include "rdft/scalar/hb.h"
static void hb_3(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(6, rs)) {
E T1, T4, Ta, Te, T5, T8, Tb, Tf;
{
E T2, T3, T6, T7;
T1 = cr[0];
T2 = cr[WS(rs, 1)];
T3 = ci[0];
T4 = T2 + T3;
Ta = FNMS(KP500000000, T4, T1);
Te = KP866025403 * (T2 - T3);
T5 = ci[WS(rs, 2)];
T6 = ci[WS(rs, 1)];
T7 = cr[WS(rs, 2)];
T8 = T6 - T7;
Tb = KP866025403 * (T6 + T7);
Tf = FNMS(KP500000000, T8, T5);
}
cr[0] = T1 + T4;
ci[0] = T5 + T8;
{
E Tc, Tg, T9, Td;
Tc = Ta - Tb;
Tg = Te + Tf;
T9 = W[0];
Td = W[1];
cr[WS(rs, 1)] = FNMS(Td, Tg, T9 * Tc);
ci[WS(rs, 1)] = FMA(T9, Tg, Td * Tc);
}
{
E Ti, Tk, Th, Tj;
Ti = Ta + Tb;
Tk = Tf - Te;
Th = W[2];
Tj = W[3];
cr[WS(rs, 2)] = FNMS(Tj, Tk, Th * Ti);
ci[WS(rs, 2)] = FMA(Th, Tk, Tj * Ti);
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 3 },
{ TW_NEXT, 1, 0 }
};
static const hc2hc_desc desc = { 3, "hb_3", twinstr, &GENUS, { 10, 6, 6, 0 } };
void X(codelet_hb_3) (planner *p) {
X(khc2hc_register) (p, hb_3, &desc);
}
#endif