furnace/extern/fftw/dft/simd/common/t3fv_16.c

441 lines
14 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:45:45 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3fv_16 -include dft/simd/t3f.h */
/*
* This function contains 98 FP additions, 86 FP multiplications,
* (or, 64 additions, 52 multiplications, 34 fused multiply/add),
* 51 stack variables, 3 constants, and 32 memory accesses
*/
#include "dft/simd/t3f.h"
static void t3fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
{
INT m;
R *x;
x = ri;
for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) {
V T2, T8, T9, Tx, Tu, TL, T3, T4, TO, TU, Tc, Tm, Ty, TE, Tp;
T2 = LDW(&(W[0]));
T8 = LDW(&(W[TWVL * 2]));
T9 = VZMUL(T2, T8);
Tx = VZMULJ(T2, T8);
Tu = LDW(&(W[TWVL * 6]));
TL = VZMULJ(T2, Tu);
T3 = LDW(&(W[TWVL * 4]));
T4 = VZMULJ(T2, T3);
TO = VZMULJ(T8, T3);
TU = VZMUL(T2, T3);
Tc = VZMUL(T8, T3);
Tm = VZMULJ(T9, T3);
Ty = VZMULJ(Tx, T3);
TE = VZMUL(Tx, T3);
Tp = VZMUL(T9, T3);
{
V T7, T1b, Tf, T1o, TR, TX, T1e, T1p, Tl, Ts, Tt, T1i, T1r, TB, TH;
V TI, T1l, T1s, T1, T6, T5;
T1 = LD(&(x[0]), ms, &(x[0]));
T5 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
T6 = VZMULJ(T4, T5);
T7 = VADD(T1, T6);
T1b = VSUB(T1, T6);
{
V Tb, Te, Ta, Td;
Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Tb = VZMULJ(T9, Ta);
Td = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
Te = VZMULJ(Tc, Td);
Tf = VADD(Tb, Te);
T1o = VSUB(Tb, Te);
}
{
V TN, TW, TQ, TT, T1c, T1d;
{
V TM, TV, TP, TS;
TM = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
TN = VZMULJ(TL, TM);
TV = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
TW = VZMULJ(TU, TV);
TP = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
TQ = VZMULJ(TO, TP);
TS = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
TT = VZMULJ(Tx, TS);
}
TR = VADD(TN, TQ);
TX = VADD(TT, TW);
T1c = VSUB(TT, TW);
T1d = VSUB(TN, TQ);
T1e = VADD(T1c, T1d);
T1p = VSUB(T1d, T1c);
}
{
V Ti, Tr, Tk, To, T1g, T1h;
{
V Th, Tq, Tj, Tn;
Th = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Ti = VZMULJ(T2, Th);
Tq = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
Tr = VZMULJ(Tp, Tq);
Tj = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
Tk = VZMULJ(T3, Tj);
Tn = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
To = VZMULJ(Tm, Tn);
}
Tl = VADD(Ti, Tk);
Ts = VADD(To, Tr);
Tt = VSUB(Tl, Ts);
T1g = VSUB(Ti, Tk);
T1h = VSUB(To, Tr);
T1i = VFNMS(LDK(KP414213562), T1h, T1g);
T1r = VFMA(LDK(KP414213562), T1g, T1h);
}
{
V Tw, TG, TA, TD, T1j, T1k;
{
V Tv, TF, Tz, TC;
Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
Tw = VZMULJ(Tu, Tv);
TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
TG = VZMULJ(TE, TF);
Tz = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
TA = VZMULJ(Ty, Tz);
TC = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
TD = VZMULJ(T8, TC);
}
TB = VADD(Tw, TA);
TH = VADD(TD, TG);
TI = VSUB(TB, TH);
T1j = VSUB(Tw, TA);
T1k = VSUB(TG, TD);
T1l = VFNMS(LDK(KP414213562), T1k, T1j);
T1s = VFMA(LDK(KP414213562), T1j, T1k);
}
{
V TK, T11, T10, T12;
{
V Tg, TJ, TY, TZ;
Tg = VSUB(T7, Tf);
TJ = VADD(Tt, TI);
TK = VFNMS(LDK(KP707106781), TJ, Tg);
T11 = VFMA(LDK(KP707106781), TJ, Tg);
TY = VSUB(TR, TX);
TZ = VSUB(TI, Tt);
T10 = VFNMS(LDK(KP707106781), TZ, TY);
T12 = VFMA(LDK(KP707106781), TZ, TY);
}
ST(&(x[WS(rs, 6)]), VFNMSI(T10, TK), ms, &(x[0]));
ST(&(x[WS(rs, 2)]), VFMAI(T12, T11), ms, &(x[0]));
ST(&(x[WS(rs, 10)]), VFMAI(T10, TK), ms, &(x[0]));
ST(&(x[WS(rs, 14)]), VFNMSI(T12, T11), ms, &(x[0]));
}
{
V T1z, T1D, T1C, T1E;
{
V T1x, T1y, T1A, T1B;
T1x = VFNMS(LDK(KP707106781), T1e, T1b);
T1y = VADD(T1r, T1s);
T1z = VFNMS(LDK(KP923879532), T1y, T1x);
T1D = VFMA(LDK(KP923879532), T1y, T1x);
T1A = VFMA(LDK(KP707106781), T1p, T1o);
T1B = VSUB(T1l, T1i);
T1C = VFNMS(LDK(KP923879532), T1B, T1A);
T1E = VFMA(LDK(KP923879532), T1B, T1A);
}
ST(&(x[WS(rs, 5)]), VFNMSI(T1C, T1z), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 13)]), VFNMSI(T1E, T1D), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 11)]), VFMAI(T1C, T1z), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 3)]), VFMAI(T1E, T1D), ms, &(x[WS(rs, 1)]));
}
{
V T15, T19, T18, T1a;
{
V T13, T14, T16, T17;
T13 = VADD(T7, Tf);
T14 = VADD(TX, TR);
T15 = VADD(T13, T14);
T19 = VSUB(T13, T14);
T16 = VADD(Tl, Ts);
T17 = VADD(TB, TH);
T18 = VADD(T16, T17);
T1a = VSUB(T17, T16);
}
ST(&(x[WS(rs, 8)]), VSUB(T15, T18), ms, &(x[0]));
ST(&(x[WS(rs, 4)]), VFMAI(T1a, T19), ms, &(x[0]));
ST(&(x[0]), VADD(T15, T18), ms, &(x[0]));
ST(&(x[WS(rs, 12)]), VFNMSI(T1a, T19), ms, &(x[0]));
}
{
V T1n, T1v, T1u, T1w;
{
V T1f, T1m, T1q, T1t;
T1f = VFMA(LDK(KP707106781), T1e, T1b);
T1m = VADD(T1i, T1l);
T1n = VFNMS(LDK(KP923879532), T1m, T1f);
T1v = VFMA(LDK(KP923879532), T1m, T1f);
T1q = VFNMS(LDK(KP707106781), T1p, T1o);
T1t = VSUB(T1r, T1s);
T1u = VFNMS(LDK(KP923879532), T1t, T1q);
T1w = VFMA(LDK(KP923879532), T1t, T1q);
}
ST(&(x[WS(rs, 9)]), VFNMSI(T1u, T1n), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 15)]), VFMAI(T1w, T1v), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 7)]), VFMAI(T1u, T1n), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 1)]), VFNMSI(T1w, T1v), ms, &(x[WS(rs, 1)]));
}
}
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(0, 1),
VTW(0, 3),
VTW(0, 9),
VTW(0, 15),
{ TW_NEXT, VL, 0 }
};
static const ct_desc desc = { 16, XSIMD_STRING("t3fv_16"), twinstr, &GENUS, { 64, 52, 34, 0 }, 0, 0, 0 };
void XSIMD(codelet_t3fv_16) (planner *p) {
X(kdft_dit_register) (p, t3fv_16, &desc);
}
#else
/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3fv_16 -include dft/simd/t3f.h */
/*
* This function contains 98 FP additions, 64 FP multiplications,
* (or, 94 additions, 60 multiplications, 4 fused multiply/add),
* 51 stack variables, 3 constants, and 32 memory accesses
*/
#include "dft/simd/t3f.h"
static void t3fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT m;
R *x;
x = ri;
for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) {
V T4, T5, T6, To, T1, Ty, T7, T8, TO, TV, Te, Tp, TB, TH, Ts;
T4 = LDW(&(W[0]));
T5 = LDW(&(W[TWVL * 2]));
T6 = VZMULJ(T4, T5);
To = VZMUL(T4, T5);
T1 = LDW(&(W[TWVL * 6]));
Ty = VZMULJ(T4, T1);
T7 = LDW(&(W[TWVL * 4]));
T8 = VZMULJ(T6, T7);
TO = VZMUL(T5, T7);
TV = VZMULJ(T4, T7);
Te = VZMUL(T6, T7);
Tp = VZMULJ(To, T7);
TB = VZMULJ(T5, T7);
TH = VZMUL(T4, T7);
Ts = VZMUL(To, T7);
{
V TY, T1f, TR, T1g, T1q, T1r, TL, TZ, T1l, T1m, T1n, Ti, T12, T1i, T1j;
V T1k, Tw, T11, TU, TX, TW;
TU = LD(&(x[0]), ms, &(x[0]));
TW = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
TX = VZMULJ(TV, TW);
TY = VSUB(TU, TX);
T1f = VADD(TU, TX);
{
V TN, TQ, TM, TP;
TM = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
TN = VZMULJ(To, TM);
TP = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
TQ = VZMULJ(TO, TP);
TR = VSUB(TN, TQ);
T1g = VADD(TN, TQ);
}
{
V TA, TJ, TD, TG, TE, TK;
{
V Tz, TI, TC, TF;
Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
TA = VZMULJ(Ty, Tz);
TI = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
TJ = VZMULJ(TH, TI);
TC = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
TD = VZMULJ(TB, TC);
TF = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
TG = VZMULJ(T6, TF);
}
T1q = VADD(TA, TD);
T1r = VADD(TG, TJ);
TE = VSUB(TA, TD);
TK = VSUB(TG, TJ);
TL = VMUL(LDK(KP707106781), VSUB(TE, TK));
TZ = VMUL(LDK(KP707106781), VADD(TK, TE));
}
{
V T3, Tg, Ta, Td, Tb, Th;
{
V T2, Tf, T9, Tc;
T2 = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
T3 = VZMULJ(T1, T2);
Tf = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
Tg = VZMULJ(Te, Tf);
T9 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Ta = VZMULJ(T8, T9);
Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Td = VZMULJ(T5, Tc);
}
T1l = VADD(T3, Ta);
T1m = VADD(Td, Tg);
T1n = VSUB(T1l, T1m);
Tb = VSUB(T3, Ta);
Th = VSUB(Td, Tg);
Ti = VFNMS(LDK(KP923879532), Th, VMUL(LDK(KP382683432), Tb));
T12 = VFMA(LDK(KP923879532), Tb, VMUL(LDK(KP382683432), Th));
}
{
V Tk, Tu, Tm, Tr, Tn, Tv;
{
V Tj, Tt, Tl, Tq;
Tj = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Tk = VZMULJ(T4, Tj);
Tt = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
Tu = VZMULJ(Ts, Tt);
Tl = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
Tm = VZMULJ(T7, Tl);
Tq = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Tr = VZMULJ(Tp, Tq);
}
T1i = VADD(Tk, Tm);
T1j = VADD(Tr, Tu);
T1k = VSUB(T1i, T1j);
Tn = VSUB(Tk, Tm);
Tv = VSUB(Tr, Tu);
Tw = VFMA(LDK(KP382683432), Tn, VMUL(LDK(KP923879532), Tv));
T11 = VFNMS(LDK(KP382683432), Tv, VMUL(LDK(KP923879532), Tn));
}
{
V T1p, T1v, T1u, T1w;
{
V T1h, T1o, T1s, T1t;
T1h = VSUB(T1f, T1g);
T1o = VMUL(LDK(KP707106781), VADD(T1k, T1n));
T1p = VADD(T1h, T1o);
T1v = VSUB(T1h, T1o);
T1s = VSUB(T1q, T1r);
T1t = VMUL(LDK(KP707106781), VSUB(T1n, T1k));
T1u = VBYI(VADD(T1s, T1t));
T1w = VBYI(VSUB(T1t, T1s));
}
ST(&(x[WS(rs, 14)]), VSUB(T1p, T1u), ms, &(x[0]));
ST(&(x[WS(rs, 6)]), VADD(T1v, T1w), ms, &(x[0]));
ST(&(x[WS(rs, 2)]), VADD(T1p, T1u), ms, &(x[0]));
ST(&(x[WS(rs, 10)]), VSUB(T1v, T1w), ms, &(x[0]));
}
{
V T1z, T1D, T1C, T1E;
{
V T1x, T1y, T1A, T1B;
T1x = VADD(T1f, T1g);
T1y = VADD(T1r, T1q);
T1z = VADD(T1x, T1y);
T1D = VSUB(T1x, T1y);
T1A = VADD(T1i, T1j);
T1B = VADD(T1l, T1m);
T1C = VADD(T1A, T1B);
T1E = VBYI(VSUB(T1B, T1A));
}
ST(&(x[WS(rs, 8)]), VSUB(T1z, T1C), ms, &(x[0]));
ST(&(x[WS(rs, 4)]), VADD(T1D, T1E), ms, &(x[0]));
ST(&(x[0]), VADD(T1z, T1C), ms, &(x[0]));
ST(&(x[WS(rs, 12)]), VSUB(T1D, T1E), ms, &(x[0]));
}
{
V TT, T15, T14, T16;
{
V Tx, TS, T10, T13;
Tx = VSUB(Ti, Tw);
TS = VSUB(TL, TR);
TT = VBYI(VSUB(Tx, TS));
T15 = VBYI(VADD(TS, Tx));
T10 = VADD(TY, TZ);
T13 = VADD(T11, T12);
T14 = VSUB(T10, T13);
T16 = VADD(T10, T13);
}
ST(&(x[WS(rs, 7)]), VADD(TT, T14), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 15)]), VSUB(T16, T15), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 9)]), VSUB(T14, TT), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 1)]), VADD(T15, T16), ms, &(x[WS(rs, 1)]));
}
{
V T19, T1d, T1c, T1e;
{
V T17, T18, T1a, T1b;
T17 = VSUB(TY, TZ);
T18 = VADD(Tw, Ti);
T19 = VADD(T17, T18);
T1d = VSUB(T17, T18);
T1a = VADD(TR, TL);
T1b = VSUB(T12, T11);
T1c = VBYI(VADD(T1a, T1b));
T1e = VBYI(VSUB(T1b, T1a));
}
ST(&(x[WS(rs, 13)]), VSUB(T19, T1c), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 5)]), VADD(T1d, T1e), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 3)]), VADD(T19, T1c), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 11)]), VSUB(T1d, T1e), ms, &(x[WS(rs, 1)]));
}
}
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(0, 1),
VTW(0, 3),
VTW(0, 9),
VTW(0, 15),
{ TW_NEXT, VL, 0 }
};
static const ct_desc desc = { 16, XSIMD_STRING("t3fv_16"), twinstr, &GENUS, { 94, 60, 4, 0 }, 0, 0, 0 };
void XSIMD(codelet_t3fv_16) (planner *p) {
X(kdft_dit_register) (p, t3fv_16, &desc);
}
#endif