furnace/extern/fftw/dft/simd/common/n2fv_6.c

177 lines
5.9 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:45:12 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name n2fv_6 -with-ostride 2 -include dft/simd/n2f.h -store-multiple 2 */
/*
* This function contains 18 FP additions, 8 FP multiplications,
* (or, 12 additions, 2 multiplications, 6 fused multiply/add),
* 25 stack variables, 2 constants, and 15 memory accesses
*/
#include "dft/simd/n2f.h"
static void n2fv_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT i;
const R *xi;
R *xo;
xi = ri;
xo = ro;
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(12, is), MAKE_VOLATILE_STRIDE(12, os)) {
V T3, Td, T6, Te, T9, Tf, Ta, Tg, T1, T2, Tj, Tk;
T1 = LD(&(xi[0]), ivs, &(xi[0]));
T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
T3 = VSUB(T1, T2);
Td = VADD(T1, T2);
{
V T4, T5, T7, T8;
T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
T6 = VSUB(T4, T5);
Te = VADD(T4, T5);
T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
T9 = VSUB(T7, T8);
Tf = VADD(T7, T8);
}
Ta = VADD(T6, T9);
Tg = VADD(Te, Tf);
Tj = VADD(T3, Ta);
STM2(&(xo[6]), Tj, ovs, &(xo[2]));
Tk = VADD(Td, Tg);
STM2(&(xo[0]), Tk, ovs, &(xo[0]));
{
V Tl, Tb, Tc, Tm;
Tb = VFNMS(LDK(KP500000000), Ta, T3);
Tc = VMUL(LDK(KP866025403), VSUB(T9, T6));
Tl = VFNMSI(Tc, Tb);
STM2(&(xo[10]), Tl, ovs, &(xo[2]));
Tm = VFMAI(Tc, Tb);
STM2(&(xo[2]), Tm, ovs, &(xo[2]));
STN2(&(xo[0]), Tk, Tm, ovs);
{
V Th, Ti, Tn, To;
Th = VFNMS(LDK(KP500000000), Tg, Td);
Ti = VMUL(LDK(KP866025403), VSUB(Tf, Te));
Tn = VFNMSI(Ti, Th);
STM2(&(xo[4]), Tn, ovs, &(xo[0]));
STN2(&(xo[4]), Tn, Tj, ovs);
To = VFMAI(Ti, Th);
STM2(&(xo[8]), To, ovs, &(xo[0]));
STN2(&(xo[8]), To, Tl, ovs);
}
}
}
}
VLEAVE();
}
static const kdft_desc desc = { 6, XSIMD_STRING("n2fv_6"), { 12, 2, 6, 0 }, &GENUS, 0, 2, 0, 0 };
void XSIMD(codelet_n2fv_6) (planner *p) { X(kdft_register) (p, n2fv_6, &desc);
}
#else
/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name n2fv_6 -with-ostride 2 -include dft/simd/n2f.h -store-multiple 2 */
/*
* This function contains 18 FP additions, 4 FP multiplications,
* (or, 16 additions, 2 multiplications, 2 fused multiply/add),
* 25 stack variables, 2 constants, and 15 memory accesses
*/
#include "dft/simd/n2f.h"
static void n2fv_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT i;
const R *xi;
R *xo;
xi = ri;
xo = ro;
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(12, is), MAKE_VOLATILE_STRIDE(12, os)) {
V T3, Td, T6, Te, T9, Tf, Ta, Tg, T1, T2, Tj, Tk;
T1 = LD(&(xi[0]), ivs, &(xi[0]));
T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
T3 = VSUB(T1, T2);
Td = VADD(T1, T2);
{
V T4, T5, T7, T8;
T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
T6 = VSUB(T4, T5);
Te = VADD(T4, T5);
T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
T9 = VSUB(T7, T8);
Tf = VADD(T7, T8);
}
Ta = VADD(T6, T9);
Tg = VADD(Te, Tf);
Tj = VADD(T3, Ta);
STM2(&(xo[6]), Tj, ovs, &(xo[2]));
Tk = VADD(Td, Tg);
STM2(&(xo[0]), Tk, ovs, &(xo[0]));
{
V Tl, Tb, Tc, Tm;
Tb = VFNMS(LDK(KP500000000), Ta, T3);
Tc = VBYI(VMUL(LDK(KP866025403), VSUB(T9, T6)));
Tl = VSUB(Tb, Tc);
STM2(&(xo[10]), Tl, ovs, &(xo[2]));
Tm = VADD(Tb, Tc);
STM2(&(xo[2]), Tm, ovs, &(xo[2]));
STN2(&(xo[0]), Tk, Tm, ovs);
{
V Th, Ti, Tn, To;
Th = VFNMS(LDK(KP500000000), Tg, Td);
Ti = VBYI(VMUL(LDK(KP866025403), VSUB(Tf, Te)));
Tn = VSUB(Th, Ti);
STM2(&(xo[4]), Tn, ovs, &(xo[0]));
STN2(&(xo[4]), Tn, Tj, ovs);
To = VADD(Th, Ti);
STM2(&(xo[8]), To, ovs, &(xo[0]));
STN2(&(xo[8]), To, Tl, ovs);
}
}
}
}
VLEAVE();
}
static const kdft_desc desc = { 6, XSIMD_STRING("n2fv_6"), { 16, 2, 2, 0 }, &GENUS, 0, 2, 0, 0 };
void XSIMD(codelet_n2fv_6) (planner *p) { X(kdft_register) (p, n2fv_6, &desc);
}
#endif