furnace/extern/fftw/dft/simd/common/n1fv_15.c

345 lines
13 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:45:00 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name n1fv_15 -include dft/simd/n1f.h */
/*
* This function contains 78 FP additions, 49 FP multiplications,
* (or, 36 additions, 7 multiplications, 42 fused multiply/add),
* 53 stack variables, 8 constants, and 30 memory accesses
*/
#include "dft/simd/n1f.h"
static void n1fv_15(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DVK(KP910592997, +0.910592997310029334643087372129977886038870291);
DVK(KP823639103, +0.823639103546331925877420039278190003029660514);
DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT i;
const R *xi;
R *xo;
xi = ri;
xo = ro;
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(30, is), MAKE_VOLATILE_STRIDE(30, os)) {
V T5, TX, TB, TO, TU, TV, TR, Ta, Tf, Tg, Tl, Tq, Tr, TE, TH;
V TI, T10, T12, T1f, T1g;
{
V T1, T2, T3, T4;
T1 = LD(&(xi[0]), ivs, &(xi[0]));
T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
T3 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
T4 = VADD(T2, T3);
T5 = VADD(T1, T4);
TX = VSUB(T3, T2);
TB = VFNMS(LDK(KP500000000), T4, T1);
}
{
V T6, T9, TC, TM, Tm, Tp, TG, TQ, Tb, Te, TD, TN, Th, Tk, TF;
V TP, TY, TZ;
{
V T7, T8, Tn, To;
T6 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
T8 = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
T9 = VADD(T7, T8);
TC = VFNMS(LDK(KP500000000), T9, T6);
TM = VSUB(T8, T7);
Tm = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Tn = LD(&(xi[WS(is, 14)]), ivs, &(xi[0]));
To = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Tp = VADD(Tn, To);
TG = VFNMS(LDK(KP500000000), Tp, Tm);
TQ = VSUB(To, Tn);
}
{
V Tc, Td, Ti, Tj;
Tb = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Te = VADD(Tc, Td);
TD = VFNMS(LDK(KP500000000), Te, Tb);
TN = VSUB(Td, Tc);
Th = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Ti = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Tj = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Tk = VADD(Ti, Tj);
TF = VFNMS(LDK(KP500000000), Tk, Th);
TP = VSUB(Tj, Ti);
}
TO = VSUB(TM, TN);
TU = VSUB(TC, TD);
TV = VSUB(TF, TG);
TR = VSUB(TP, TQ);
Ta = VADD(T6, T9);
Tf = VADD(Tb, Te);
Tg = VADD(Ta, Tf);
Tl = VADD(Th, Tk);
Tq = VADD(Tm, Tp);
Tr = VADD(Tl, Tq);
TE = VADD(TC, TD);
TH = VADD(TF, TG);
TI = VADD(TE, TH);
TY = VADD(TM, TN);
TZ = VADD(TP, TQ);
T10 = VADD(TY, TZ);
T12 = VSUB(TY, TZ);
}
T1f = VADD(TB, TI);
T1g = VMUL(LDK(KP866025403), VADD(TX, T10));
ST(&(xo[WS(os, 5)]), VFNMSI(T1g, T1f), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 10)]), VFMAI(T1g, T1f), ovs, &(xo[0]));
{
V Tu, Ts, Tt, Ty, TA, Tw, Tx, Tz, Tv;
Tu = VSUB(Tg, Tr);
Ts = VADD(Tg, Tr);
Tt = VFNMS(LDK(KP250000000), Ts, T5);
Tw = VSUB(Tl, Tq);
Tx = VSUB(Ta, Tf);
Ty = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tx, Tw));
TA = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tw, Tx));
ST(&(xo[0]), VADD(T5, Ts), ovs, &(xo[0]));
Tz = VFMA(LDK(KP559016994), Tu, Tt);
ST(&(xo[WS(os, 6)]), VFNMSI(TA, Tz), ovs, &(xo[0]));
ST(&(xo[WS(os, 9)]), VFMAI(TA, Tz), ovs, &(xo[WS(os, 1)]));
Tv = VFNMS(LDK(KP559016994), Tu, Tt);
ST(&(xo[WS(os, 3)]), VFNMSI(Ty, Tv), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 12)]), VFMAI(Ty, Tv), ovs, &(xo[0]));
}
{
V TS, TW, T1a, T18, T13, T1b, TL, T17, T11, TJ, TK;
TS = VFMA(LDK(KP618033988), TR, TO);
TW = VFMA(LDK(KP618033988), TV, TU);
T1a = VFNMS(LDK(KP618033988), TU, TV);
T18 = VFNMS(LDK(KP618033988), TO, TR);
T11 = VFNMS(LDK(KP250000000), T10, TX);
T13 = VFMA(LDK(KP559016994), T12, T11);
T1b = VFNMS(LDK(KP559016994), T12, T11);
TJ = VFNMS(LDK(KP250000000), TI, TB);
TK = VSUB(TE, TH);
TL = VFMA(LDK(KP559016994), TK, TJ);
T17 = VFNMS(LDK(KP559016994), TK, TJ);
{
V TT, T14, T1d, T1e;
TT = VFMA(LDK(KP823639103), TS, TL);
T14 = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T13, TW));
ST(&(xo[WS(os, 1)]), VFNMSI(T14, TT), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 14)]), VFMAI(T14, TT), ovs, &(xo[0]));
T1d = VFNMS(LDK(KP823639103), T18, T17);
T1e = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T1b, T1a));
ST(&(xo[WS(os, 8)]), VFNMSI(T1e, T1d), ovs, &(xo[0]));
ST(&(xo[WS(os, 7)]), VFMAI(T1e, T1d), ovs, &(xo[WS(os, 1)]));
}
{
V T15, T16, T19, T1c;
T15 = VFNMS(LDK(KP823639103), TS, TL);
T16 = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T13, TW));
ST(&(xo[WS(os, 11)]), VFNMSI(T16, T15), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 4)]), VFMAI(T16, T15), ovs, &(xo[0]));
T19 = VFMA(LDK(KP823639103), T18, T17);
T1c = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T1b, T1a));
ST(&(xo[WS(os, 13)]), VFNMSI(T1c, T19), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 2)]), VFMAI(T1c, T19), ovs, &(xo[0]));
}
}
}
}
VLEAVE();
}
static const kdft_desc desc = { 15, XSIMD_STRING("n1fv_15"), { 36, 7, 42, 0 }, &GENUS, 0, 0, 0, 0 };
void XSIMD(codelet_n1fv_15) (planner *p) { X(kdft_register) (p, n1fv_15, &desc);
}
#else
/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name n1fv_15 -include dft/simd/n1f.h */
/*
* This function contains 78 FP additions, 25 FP multiplications,
* (or, 64 additions, 11 multiplications, 14 fused multiply/add),
* 55 stack variables, 10 constants, and 30 memory accesses
*/
#include "dft/simd/n1f.h"
static void n1fv_15(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DVK(KP216506350, +0.216506350946109661690930792688234045867850657);
DVK(KP509036960, +0.509036960455127183450980863393907648510733164);
DVK(KP823639103, +0.823639103546331925877420039278190003029660514);
DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
DVK(KP484122918, +0.484122918275927110647408174972799951354115213);
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT i;
const R *xi;
R *xo;
xi = ri;
xo = ro;
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(30, is), MAKE_VOLATILE_STRIDE(30, os)) {
V T5, T10, TB, TO, TU, TV, TR, Ta, Tf, Tg, Tl, Tq, Tr, TE, TH;
V TI, TZ, T11, T1f, T1g;
{
V T1, T2, T3, T4;
T1 = LD(&(xi[0]), ivs, &(xi[0]));
T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
T3 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
T4 = VADD(T2, T3);
T5 = VADD(T1, T4);
T10 = VSUB(T3, T2);
TB = VFNMS(LDK(KP500000000), T4, T1);
}
{
V T6, T9, TC, TP, Tm, Tp, TG, TN, Tb, Te, TD, TQ, Th, Tk, TF;
V TM, TX, TY;
{
V T7, T8, Tn, To;
T6 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
T8 = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
T9 = VADD(T7, T8);
TC = VFNMS(LDK(KP500000000), T9, T6);
TP = VSUB(T8, T7);
Tm = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Tn = LD(&(xi[WS(is, 14)]), ivs, &(xi[0]));
To = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Tp = VADD(Tn, To);
TG = VFNMS(LDK(KP500000000), Tp, Tm);
TN = VSUB(To, Tn);
}
{
V Tc, Td, Ti, Tj;
Tb = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Te = VADD(Tc, Td);
TD = VFNMS(LDK(KP500000000), Te, Tb);
TQ = VSUB(Td, Tc);
Th = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Ti = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Tj = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Tk = VADD(Ti, Tj);
TF = VFNMS(LDK(KP500000000), Tk, Th);
TM = VSUB(Tj, Ti);
}
TO = VSUB(TM, TN);
TU = VSUB(TF, TG);
TV = VSUB(TC, TD);
TR = VSUB(TP, TQ);
Ta = VADD(T6, T9);
Tf = VADD(Tb, Te);
Tg = VADD(Ta, Tf);
Tl = VADD(Th, Tk);
Tq = VADD(Tm, Tp);
Tr = VADD(Tl, Tq);
TE = VADD(TC, TD);
TH = VADD(TF, TG);
TI = VADD(TE, TH);
TX = VADD(TP, TQ);
TY = VADD(TM, TN);
TZ = VMUL(LDK(KP484122918), VSUB(TX, TY));
T11 = VADD(TX, TY);
}
T1f = VADD(TB, TI);
T1g = VBYI(VMUL(LDK(KP866025403), VADD(T10, T11)));
ST(&(xo[WS(os, 5)]), VSUB(T1f, T1g), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 10)]), VADD(T1f, T1g), ovs, &(xo[0]));
{
V Tu, Ts, Tt, Ty, TA, Tw, Tx, Tz, Tv;
Tu = VMUL(LDK(KP559016994), VSUB(Tg, Tr));
Ts = VADD(Tg, Tr);
Tt = VFNMS(LDK(KP250000000), Ts, T5);
Tw = VSUB(Tl, Tq);
Tx = VSUB(Ta, Tf);
Ty = VBYI(VFNMS(LDK(KP587785252), Tx, VMUL(LDK(KP951056516), Tw)));
TA = VBYI(VFMA(LDK(KP951056516), Tx, VMUL(LDK(KP587785252), Tw)));
ST(&(xo[0]), VADD(T5, Ts), ovs, &(xo[0]));
Tz = VADD(Tu, Tt);
ST(&(xo[WS(os, 6)]), VSUB(Tz, TA), ovs, &(xo[0]));
ST(&(xo[WS(os, 9)]), VADD(TA, Tz), ovs, &(xo[WS(os, 1)]));
Tv = VSUB(Tt, Tu);
ST(&(xo[WS(os, 3)]), VSUB(Tv, Ty), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 12)]), VADD(Ty, Tv), ovs, &(xo[0]));
}
{
V TS, TW, T1b, T18, T13, T1a, TL, T17, T12, TJ, TK;
TS = VFNMS(LDK(KP509036960), TR, VMUL(LDK(KP823639103), TO));
TW = VFNMS(LDK(KP587785252), TV, VMUL(LDK(KP951056516), TU));
T1b = VFMA(LDK(KP951056516), TV, VMUL(LDK(KP587785252), TU));
T18 = VFMA(LDK(KP823639103), TR, VMUL(LDK(KP509036960), TO));
T12 = VFNMS(LDK(KP216506350), T11, VMUL(LDK(KP866025403), T10));
T13 = VSUB(TZ, T12);
T1a = VADD(TZ, T12);
TJ = VFNMS(LDK(KP250000000), TI, TB);
TK = VMUL(LDK(KP559016994), VSUB(TE, TH));
TL = VSUB(TJ, TK);
T17 = VADD(TK, TJ);
{
V TT, T14, T1d, T1e;
TT = VSUB(TL, TS);
T14 = VBYI(VSUB(TW, T13));
ST(&(xo[WS(os, 8)]), VSUB(TT, T14), ovs, &(xo[0]));
ST(&(xo[WS(os, 7)]), VADD(TT, T14), ovs, &(xo[WS(os, 1)]));
T1d = VSUB(T17, T18);
T1e = VBYI(VADD(T1b, T1a));
ST(&(xo[WS(os, 11)]), VSUB(T1d, T1e), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 4)]), VADD(T1d, T1e), ovs, &(xo[0]));
}
{
V T15, T16, T19, T1c;
T15 = VADD(TL, TS);
T16 = VBYI(VADD(TW, T13));
ST(&(xo[WS(os, 13)]), VSUB(T15, T16), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 2)]), VADD(T15, T16), ovs, &(xo[0]));
T19 = VADD(T17, T18);
T1c = VBYI(VSUB(T1a, T1b));
ST(&(xo[WS(os, 14)]), VSUB(T19, T1c), ovs, &(xo[0]));
ST(&(xo[WS(os, 1)]), VADD(T19, T1c), ovs, &(xo[WS(os, 1)]));
}
}
}
}
VLEAVE();
}
static const kdft_desc desc = { 15, XSIMD_STRING("n1fv_15"), { 64, 11, 14, 0 }, &GENUS, 0, 0, 0, 0 };
void XSIMD(codelet_n1fv_15) (planner *p) { X(kdft_register) (p, n1fv_15, &desc);
}
#endif