furnace/extern/fftw/dft/simd/common/n1bv_8.c

183 lines
6.1 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:45:02 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 8 -name n1bv_8 -include dft/simd/n1b.h */
/*
* This function contains 26 FP additions, 10 FP multiplications,
* (or, 16 additions, 0 multiplications, 10 fused multiply/add),
* 22 stack variables, 1 constants, and 16 memory accesses
*/
#include "dft/simd/n1b.h"
static void n1bv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT i;
const R *xi;
R *xo;
xi = ii;
xo = io;
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
V T3, Tj, Te, Tk, Ta, Tn, Tf, Tm;
{
V T1, T2, Tc, Td;
T1 = LD(&(xi[0]), ivs, &(xi[0]));
T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
T3 = VSUB(T1, T2);
Tj = VADD(T1, T2);
Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Td = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Te = VSUB(Tc, Td);
Tk = VADD(Tc, Td);
{
V T4, T5, T6, T7, T8, T9;
T4 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
T6 = VSUB(T4, T5);
T7 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
T9 = VSUB(T7, T8);
Ta = VADD(T6, T9);
Tn = VADD(T7, T8);
Tf = VSUB(T6, T9);
Tm = VADD(T4, T5);
}
}
{
V Tb, Tg, Tp, Tq;
Tb = VFNMS(LDK(KP707106781), Ta, T3);
Tg = VFNMS(LDK(KP707106781), Tf, Te);
ST(&(xo[WS(os, 3)]), VFNMSI(Tg, Tb), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 5)]), VFMAI(Tg, Tb), ovs, &(xo[WS(os, 1)]));
Tp = VADD(Tj, Tk);
Tq = VADD(Tm, Tn);
ST(&(xo[WS(os, 4)]), VSUB(Tp, Tq), ovs, &(xo[0]));
ST(&(xo[0]), VADD(Tp, Tq), ovs, &(xo[0]));
}
{
V Th, Ti, Tl, To;
Th = VFMA(LDK(KP707106781), Ta, T3);
Ti = VFMA(LDK(KP707106781), Tf, Te);
ST(&(xo[WS(os, 1)]), VFMAI(Ti, Th), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 7)]), VFNMSI(Ti, Th), ovs, &(xo[WS(os, 1)]));
Tl = VSUB(Tj, Tk);
To = VSUB(Tm, Tn);
ST(&(xo[WS(os, 6)]), VFNMSI(To, Tl), ovs, &(xo[0]));
ST(&(xo[WS(os, 2)]), VFMAI(To, Tl), ovs, &(xo[0]));
}
}
}
VLEAVE();
}
static const kdft_desc desc = { 8, XSIMD_STRING("n1bv_8"), { 16, 0, 10, 0 }, &GENUS, 0, 0, 0, 0 };
void XSIMD(codelet_n1bv_8) (planner *p) { X(kdft_register) (p, n1bv_8, &desc);
}
#else
/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 8 -name n1bv_8 -include dft/simd/n1b.h */
/*
* This function contains 26 FP additions, 2 FP multiplications,
* (or, 26 additions, 2 multiplications, 0 fused multiply/add),
* 22 stack variables, 1 constants, and 16 memory accesses
*/
#include "dft/simd/n1b.h"
static void n1bv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT i;
const R *xi;
R *xo;
xi = ii;
xo = io;
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
V Ta, Tk, Te, Tj, T7, Tn, Tf, Tm;
{
V T8, T9, Tc, Td;
T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
T9 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Ta = VSUB(T8, T9);
Tk = VADD(T8, T9);
Tc = LD(&(xi[0]), ivs, &(xi[0]));
Td = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Te = VSUB(Tc, Td);
Tj = VADD(Tc, Td);
{
V T1, T2, T3, T4, T5, T6;
T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
T3 = VSUB(T1, T2);
T4 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
T6 = VSUB(T4, T5);
T7 = VMUL(LDK(KP707106781), VSUB(T3, T6));
Tn = VADD(T4, T5);
Tf = VMUL(LDK(KP707106781), VADD(T3, T6));
Tm = VADD(T1, T2);
}
}
{
V Tb, Tg, Tp, Tq;
Tb = VBYI(VSUB(T7, Ta));
Tg = VSUB(Te, Tf);
ST(&(xo[WS(os, 3)]), VADD(Tb, Tg), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 5)]), VSUB(Tg, Tb), ovs, &(xo[WS(os, 1)]));
Tp = VADD(Tj, Tk);
Tq = VADD(Tm, Tn);
ST(&(xo[WS(os, 4)]), VSUB(Tp, Tq), ovs, &(xo[0]));
ST(&(xo[0]), VADD(Tp, Tq), ovs, &(xo[0]));
}
{
V Th, Ti, Tl, To;
Th = VBYI(VADD(Ta, T7));
Ti = VADD(Te, Tf);
ST(&(xo[WS(os, 1)]), VADD(Th, Ti), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 7)]), VSUB(Ti, Th), ovs, &(xo[WS(os, 1)]));
Tl = VSUB(Tj, Tk);
To = VBYI(VSUB(Tm, Tn));
ST(&(xo[WS(os, 6)]), VSUB(Tl, To), ovs, &(xo[0]));
ST(&(xo[WS(os, 2)]), VADD(Tl, To), ovs, &(xo[0]));
}
}
}
VLEAVE();
}
static const kdft_desc desc = { 8, XSIMD_STRING("n1bv_8"), { 26, 2, 0, 0 }, &GENUS, 0, 0, 0, 0 };
void XSIMD(codelet_n1bv_8) (planner *p) { X(kdft_register) (p, n1bv_8, &desc);
}
#endif