furnace/extern/fftw/rdft/ct-hc2c.c
2022-05-31 03:24:29 -05:00

296 lines
7.2 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "ct-hc2c.h"
#include "dft/dft.h"
typedef struct {
plan_rdft2 super;
plan *cld;
plan *cldw;
INT r;
} P;
static void apply_dit(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
{
const P *ego = (const P *) ego_;
plan_rdft *cld;
plan_hc2c *cldw;
UNUSED(r1);
cld = (plan_rdft *) ego->cld;
cld->apply(ego->cld, r0, cr);
cldw = (plan_hc2c *) ego->cldw;
cldw->apply(ego->cldw, cr, ci);
}
static void apply_dif(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
{
const P *ego = (const P *) ego_;
plan_rdft *cld;
plan_hc2c *cldw;
UNUSED(r1);
cldw = (plan_hc2c *) ego->cldw;
cldw->apply(ego->cldw, cr, ci);
cld = (plan_rdft *) ego->cld;
cld->apply(ego->cld, cr, r0);
}
static void apply_dit_dft(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
{
const P *ego = (const P *) ego_;
plan_dft *cld;
plan_hc2c *cldw;
cld = (plan_dft *) ego->cld;
cld->apply(ego->cld, r0, r1, cr, ci);
cldw = (plan_hc2c *) ego->cldw;
cldw->apply(ego->cldw, cr, ci);
}
static void apply_dif_dft(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
{
const P *ego = (const P *) ego_;
plan_dft *cld;
plan_hc2c *cldw;
cldw = (plan_hc2c *) ego->cldw;
cldw->apply(ego->cldw, cr, ci);
cld = (plan_dft *) ego->cld;
cld->apply(ego->cld, ci, cr, r1, r0);
}
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(plan_awake)(ego->cld, wakefulness);
X(plan_awake)(ego->cldw, wakefulness);
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cldw);
X(plan_destroy_internal)(ego->cld);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
p->print(p, "(rdft2-ct-%s/%D%(%p%)%(%p%))",
(ego->super.apply == apply_dit ||
ego->super.apply == apply_dit_dft)
? "dit" : "dif",
ego->r, ego->cldw, ego->cld);
}
static int applicable0(const hc2c_solver *ego, const problem *p_, planner *plnr)
{
const problem_rdft2 *p = (const problem_rdft2 *) p_;
INT r;
return (1
&& p->sz->rnk == 1
&& p->vecsz->rnk <= 1
&& (/* either the problem is R2HC, which is solved by DIT */
(p->kind == R2HC)
||
/* or the problem is HC2R, in which case it is solved
by DIF, which destroys the input */
(p->kind == HC2R &&
(p->r0 == p->cr || !NO_DESTROY_INPUTP(plnr))))
&& ((r = X(choose_radix)(ego->r, p->sz->dims[0].n)) > 0)
&& p->sz->dims[0].n > r);
}
static int hc2c_applicable(const hc2c_solver *ego, const problem *p_,
planner *plnr)
{
const problem_rdft2 *p;
if (!applicable0(ego, p_, plnr))
return 0;
p = (const problem_rdft2 *) p_;
return (0
|| p->vecsz->rnk == 0
|| !NO_VRECURSEP(plnr)
);
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const hc2c_solver *ego = (const hc2c_solver *) ego_;
const problem_rdft2 *p;
P *pln = 0;
plan *cld = 0, *cldw = 0;
INT n, r, m, v, ivs, ovs;
iodim *d;
static const plan_adt padt = {
X(rdft2_solve), awake, print, destroy
};
if (!hc2c_applicable(ego, p_, plnr))
return (plan *) 0;
p = (const problem_rdft2 *) p_;
d = p->sz->dims;
n = d[0].n;
r = X(choose_radix)(ego->r, n);
A((r % 2) == 0);
m = n / r;
X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs);
switch (p->kind) {
case R2HC:
cldw = ego->mkcldw(ego, R2HC,
r, m * d[0].os,
m, d[0].os,
v, ovs,
p->cr, p->ci, plnr);
if (!cldw) goto nada;
switch (ego->hc2ckind) {
case HC2C_VIA_RDFT:
cld = X(mkplan_d)(
plnr,
X(mkproblem_rdft_1_d)(
X(mktensor_1d)(m, (r/2)*d[0].is, d[0].os),
X(mktensor_3d)(
2, p->r1 - p->r0, p->ci - p->cr,
r / 2, d[0].is, m * d[0].os,
v, ivs, ovs),
p->r0, p->cr, R2HC)
);
if (!cld) goto nada;
pln = MKPLAN_RDFT2(P, &padt, apply_dit);
break;
case HC2C_VIA_DFT:
cld = X(mkplan_d)(
plnr,
X(mkproblem_dft_d)(
X(mktensor_1d)(m, (r/2)*d[0].is, d[0].os),
X(mktensor_2d)(
r / 2, d[0].is, m * d[0].os,
v, ivs, ovs),
p->r0, p->r1, p->cr, p->ci)
);
if (!cld) goto nada;
pln = MKPLAN_RDFT2(P, &padt, apply_dit_dft);
break;
}
break;
case HC2R:
cldw = ego->mkcldw(ego, HC2R,
r, m * d[0].is,
m, d[0].is,
v, ivs,
p->cr, p->ci, plnr);
if (!cldw) goto nada;
switch (ego->hc2ckind) {
case HC2C_VIA_RDFT:
cld = X(mkplan_d)(
plnr,
X(mkproblem_rdft_1_d)(
X(mktensor_1d)(m, d[0].is, (r/2)*d[0].os),
X(mktensor_3d)(
2, p->ci - p->cr, p->r1 - p->r0,
r / 2, m * d[0].is, d[0].os,
v, ivs, ovs),
p->cr, p->r0, HC2R)
);
if (!cld) goto nada;
pln = MKPLAN_RDFT2(P, &padt, apply_dif);
break;
case HC2C_VIA_DFT:
cld = X(mkplan_d)(
plnr,
X(mkproblem_dft_d)(
X(mktensor_1d)(m, d[0].is, (r/2)*d[0].os),
X(mktensor_2d)(
r / 2, m * d[0].is, d[0].os,
v, ivs, ovs),
p->ci, p->cr, p->r1, p->r0)
);
if (!cld) goto nada;
pln = MKPLAN_RDFT2(P, &padt, apply_dif_dft);
break;
}
break;
default:
A(0);
}
pln->cld = cld;
pln->cldw = cldw;
pln->r = r;
X(ops_add)(&cld->ops, &cldw->ops, &pln->super.super.ops);
/* inherit could_prune_now_p attribute from cldw */
pln->super.super.could_prune_now_p = cldw->could_prune_now_p;
return &(pln->super.super);
nada:
X(plan_destroy_internal)(cldw);
X(plan_destroy_internal)(cld);
return (plan *) 0;
}
hc2c_solver *X(mksolver_hc2c)(size_t size, INT r,
hc2c_kind hc2ckind,
hc2c_mkinferior mkcldw)
{
static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 };
hc2c_solver *slv = (hc2c_solver *)X(mksolver)(size, &sadt);
slv->r = r;
slv->hc2ckind = hc2ckind;
slv->mkcldw = mkcldw;
return slv;
}
plan *X(mkplan_hc2c)(size_t size, const plan_adt *adt, hc2capply apply)
{
plan_hc2c *ego;
ego = (plan_hc2c *) X(mkplan)(size, adt);
ego->apply = apply;
return &(ego->super);
}