furnace/extern/SAASound/src/SAAAmp.cpp
2022-02-13 17:02:49 -05:00

203 lines
5.4 KiB
C++
Executable file

// Part of SAASound copyright 1998-2018 Dave Hooper <dave@beermex.com>
//
// SAAAmp.cpp: implementation of the CSAAAmp class.
// This class handles Tone/Noise mixing, Envelope application and
// amplification.
//
//////////////////////////////////////////////////////////////////////
#include "SAASound.h"
#include "types.h"
#include "SAANoise.h"
#include "SAAEnv.h"
#include "SAAFreq.h"
#include "SAAAmp.h"
#include "defns.h"
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
CSAAAmp::CSAAAmp(CSAAFreq * const ToneGenerator, const CSAANoise * const NoiseGenerator, const CSAAEnv * const EnvGenerator)
:
m_pcConnectedToneGenerator(ToneGenerator),
m_pcConnectedNoiseGenerator(NoiseGenerator),
m_pcConnectedEnvGenerator(EnvGenerator),
m_bUseEnvelope(EnvGenerator != NULL)
{
leftlevel = 0;
leftlevela0x0e = 0;
rightlevel = 0;
rightlevela0x0e = 0;
m_nMixMode = 0;
m_bMute=true;
m_bSync = false;
m_nOutputIntermediate=0;
last_level_byte=0;
SetAmpLevel(0x00);
}
CSAAAmp::~CSAAAmp()
{
// Nothing to do
}
void CSAAAmp::SetAmpLevel(BYTE level_byte)
{
// if level unchanged since last call then do nothing
if (level_byte != last_level_byte)
{
last_level_byte = level_byte;
leftlevel = level_byte & 0x0f;
leftlevela0x0e = leftlevel & 0x0e;
rightlevel = (level_byte >> 4) & 0x0f;
rightlevela0x0e = rightlevel & 0x0e;
}
}
void CSAAAmp::SetToneMixer(BYTE bEnabled)
{
if (bEnabled == 0)
{
// clear mixer bit
m_nMixMode &= ~(0x01);
}
else
{
// set mixer bit
m_nMixMode |= 0x01;
}
}
void CSAAAmp::SetNoiseMixer(BYTE bEnabled)
{
if (bEnabled == 0)
{
m_nMixMode &= ~(0x02);
}
else
{
m_nMixMode |= 0x02;
}
}
void CSAAAmp::Mute(bool bMute)
{
// m_bMute refers to the GLOBAL mute setting (register 28 bit 0)
// NOT the per-channel mixer settings !!
m_bMute = bMute;
}
void CSAAAmp::Sync(bool bSync)
{
// m_bSync refers to the GLOBAL sync setting (register 28 bit 1)
m_bSync = bSync;
}
void CSAAAmp::Tick(void)
{
// updates m_nOutputIntermediate to 0, 1 or 2
//
// connected oscillator always ticks (this isn't really connected to the amp)
int level = m_pcConnectedToneGenerator->Tick();
switch (m_nMixMode)
{
case 0:
// no tone or noise for this channel
m_nOutputIntermediate = 0;
break;
case 1:
// tone only for this channel
m_nOutputIntermediate = level * 2;
// NOTE: ConnectedToneGenerator returns either 0 or 1
break;
case 2:
// noise only for this channel
m_nOutputIntermediate = m_pcConnectedNoiseGenerator->Level() * 2;
// NOTE: ConnectedNoiseGenerator()->Level() returns either 0 or 1
break;
case 3:
// tone+noise for this channel ... mixing algorithm :
// tone noise output
// 0 0 0
// 1 0 2
// 0 1 0
// 1 1 1
// = 2 * tone - 1 * (tone & noise)
// = tone * (2 - noise)
m_nOutputIntermediate = level * (2 - m_pcConnectedNoiseGenerator->Level());
break;
}
// intermediate is between 0 and 2
}
inline int CSAAAmp::EffectiveAmplitude(int amp, int env) const
{
// Return the effective amplitude of the low-pass-filtered result of the logical
// AND of the amplitude PDM and envelope PDM patterns. This is a more accurate
// evaluation of the SAA than simply returning amp * env , based on how the SAA
// implements pulse-density modulation.
static const int pdm[16][16] = {
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4},
{0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8},
{0,1,1,2,4,5,5,6,6,7,7,8,10,11,11,12},
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15},
{0,1,2,3,6,7,8,9,10,11,12,13,16,17,18,19},
{0,2,3,5,6,8,9,11,12,14,15,17,18,20,21,23},
{0,2,3,5,8,10,11,13,14,16,17,19,22,24,25,27},
{0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30},
{0,2,4,6,10,12,14,16,18,20,22,24,28,30,32,34},
{0,3,5,8,10,13,15,18,20,23,25,28,30,33,35,38},
{0,3,5,8,12,15,17,20,22,25,27,30,34,37,39,42},
{0,3,6,9,12,15,18,21,24,27,30,33,36,39,42,45},
{0,3,6,9,14,17,20,23,26,29,32,35,40,43,46,49},
{0,4,7,11,14,18,21,25,28,32,35,39,42,46,49,53},
{0,4,7,11,16,20,23,27,30,34,37,41,46,50,53,57}
};
return(pdm[amp][env] * 4);
}
void CSAAAmp::TickAndOutputStereo(unsigned int & left, unsigned int & right)
{
// This returns a value between 0 and 480 inclusive.
// This represents the full dynamic range of one output mixer (tone, or noise+tone, at full volume,
// without envelopes enabled). Note that, with envelopes enabled, the actual dynamic range
// is reduced on-chip to just over 88% of this (424), so the "loudest" output requires disabling envs.
// NB for 6 channels at full volume, with simple additive mixing, you would see a combined
// output of 2880, and a multiplier of 11 (=31680) fits comfortably within 16-bit signed output range.
if (m_bSync)
{
// TODO check this
left = right = 0;
return;
}
// first, do the Tick:
Tick();
// now calculate the returned amplitude for this sample:
////////////////////////////////////////////////////////
if (m_bMute)
{
left = right = 0;
}
else if (m_bUseEnvelope && m_pcConnectedEnvGenerator->IsActive())
{
left = EffectiveAmplitude(m_pcConnectedEnvGenerator->LeftLevel(), leftlevela0x0e) * (2 - m_nOutputIntermediate);
right = EffectiveAmplitude(m_pcConnectedEnvGenerator->RightLevel(), rightlevela0x0e) * (2 - m_nOutputIntermediate);
}
else
{
left = leftlevel * m_nOutputIntermediate * 16;
right = rightlevel * m_nOutputIntermediate * 16;
}
}