mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-06 04:45:05 +00:00
54e93db207
not reliable yet
288 lines
7.3 KiB
C
288 lines
7.3 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* Generic128d added by Romain Dolbeau, and turned into simd-generic128.h
|
|
* with single & double precision by Erik Lindahl.
|
|
* Romain Dolbeau hereby places his modifications in the public domain.
|
|
* Erik Lindahl hereby places his modifications in the public domain.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
|
|
#if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
|
|
# error "Generic simd128 only works in single or double precision"
|
|
#endif
|
|
|
|
#define SIMD_SUFFIX _generic_simd128 /* for renaming */
|
|
|
|
#ifdef FFTW_SINGLE
|
|
# define DS(d,s) s /* single-precision option */
|
|
# define VDUPL(x) (V){x[0],x[0],x[2],x[2]}
|
|
# define VDUPH(x) (V){x[1],x[1],x[3],x[3]}
|
|
# define DVK(var, val) V var = {val,val,val,val}
|
|
#else
|
|
# define DS(d,s) d /* double-precision option */
|
|
# define VDUPL(x) (V){x[0],x[0]}
|
|
# define VDUPH(x) (V){x[1],x[1]}
|
|
# define DVK(var, val) V var = {val, val}
|
|
#endif
|
|
|
|
#define VL DS(1,2) /* SIMD vector length, in term of complex numbers */
|
|
#define SIMD_VSTRIDE_OKA(x) DS(SIMD_STRIDE_OKA(x),((x) == 2))
|
|
#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
|
|
|
|
typedef DS(double,float) V __attribute__ ((vector_size(16)));
|
|
|
|
#define VADD(a,b) ((a)+(b))
|
|
#define VSUB(a,b) ((a)-(b))
|
|
#define VMUL(a,b) ((a)*(b))
|
|
|
|
|
|
#define LDK(x) x
|
|
|
|
static inline V LDA(const R *x, INT ivs, const R *aligned_like)
|
|
{
|
|
(void)aligned_like; /* UNUSED */
|
|
(void)ivs; /* UNUSED */
|
|
return *(const V *)x;
|
|
}
|
|
|
|
static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
|
|
{
|
|
(void)aligned_like; /* UNUSED */
|
|
(void)ovs; /* UNUSED */
|
|
*(V *)x = v;
|
|
}
|
|
|
|
static inline V LD(const R *x, INT ivs, const R *aligned_like)
|
|
{
|
|
(void)aligned_like; /* UNUSED */
|
|
V res;
|
|
res[0] = x[0];
|
|
res[1] = x[1];
|
|
#ifdef FFTW_SINGLE
|
|
res[2] = x[ivs];
|
|
res[3] = x[ivs+1];
|
|
#endif
|
|
return res;
|
|
}
|
|
|
|
#ifdef FFTW_SINGLE
|
|
/* ST has to be separate due to the storage hack requiring reverse order */
|
|
static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
|
|
{
|
|
(void)aligned_like; /* UNUSED */
|
|
(void)ovs; /* UNUSED */
|
|
*(x + ovs ) = v[2];
|
|
*(x + ovs + 1) = v[3];
|
|
*(x ) = v[0];
|
|
*(x + 1) = v[1];
|
|
}
|
|
#else
|
|
/* FFTW_DOUBLE */
|
|
# define ST STA
|
|
#endif
|
|
|
|
#ifdef FFTW_SINGLE
|
|
#define STM2 ST
|
|
#define STN2(x, v0, v1, ovs) /* nop */
|
|
|
|
static inline void STN4(R *x, V v0, V v1, V v2, V v3, INT ovs)
|
|
{
|
|
*(x ) = v0[0];
|
|
*(x + 1) = v1[0];
|
|
*(x + 2) = v2[0];
|
|
*(x + 3) = v3[0];
|
|
*(x + ovs ) = v0[1];
|
|
*(x + ovs + 1) = v1[1];
|
|
*(x + ovs + 2) = v2[1];
|
|
*(x + ovs + 3) = v3[1];
|
|
*(x + 2 * ovs ) = v0[2];
|
|
*(x + 2 * ovs + 1) = v1[2];
|
|
*(x + 2 * ovs + 2) = v2[2];
|
|
*(x + 2 * ovs + 3) = v3[2];
|
|
*(x + 3 * ovs ) = v0[3];
|
|
*(x + 3 * ovs + 1) = v1[3];
|
|
*(x + 3 * ovs + 2) = v2[3];
|
|
*(x + 3 * ovs + 3) = v3[3];
|
|
}
|
|
#define STM4(x, v, ovs, aligned_like) /* no-op */
|
|
|
|
|
|
#else
|
|
/* FFTW_DOUBLE */
|
|
|
|
#define STM2 STA
|
|
#define STN2(x, v0, v1, ovs) /* nop */
|
|
|
|
static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
|
|
{
|
|
(void)aligned_like; /* UNUSED */
|
|
*(x) = v[0];
|
|
*(x+ovs) = v[1];
|
|
}
|
|
# define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
|
|
#endif
|
|
|
|
|
|
static inline V FLIP_RI(V x)
|
|
{
|
|
#ifdef FFTW_SINGLE
|
|
return (V){x[1],x[0],x[3],x[2]};
|
|
#else
|
|
return (V){x[1],x[0]};
|
|
#endif
|
|
}
|
|
|
|
static inline V VCONJ(V x)
|
|
{
|
|
#ifdef FFTW_SINGLE
|
|
return (V){x[0],-x[1],x[2],-x[3]};
|
|
#else
|
|
return (V){x[0],-x[1]};
|
|
#endif
|
|
}
|
|
|
|
static inline V VBYI(V x)
|
|
{
|
|
x = VCONJ(x);
|
|
x = FLIP_RI(x);
|
|
return x;
|
|
}
|
|
|
|
/* FMA support */
|
|
#define VFMA(a, b, c) VADD(c, VMUL(a, b))
|
|
#define VFNMS(a, b, c) VSUB(c, VMUL(a, b))
|
|
#define VFMS(a, b, c) VSUB(VMUL(a, b), c)
|
|
#define VFMAI(b, c) VADD(c, VBYI(b))
|
|
#define VFNMSI(b, c) VSUB(c, VBYI(b))
|
|
#define VFMACONJ(b,c) VADD(VCONJ(b),c)
|
|
#define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
|
|
#define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
|
|
|
|
static inline V VZMUL(V tx, V sr)
|
|
{
|
|
V tr = VDUPL(tx);
|
|
V ti = VDUPH(tx);
|
|
tr = VMUL(sr, tr);
|
|
sr = VBYI(sr);
|
|
return VFMA(ti, sr, tr);
|
|
}
|
|
|
|
static inline V VZMULJ(V tx, V sr)
|
|
{
|
|
V tr = VDUPL(tx);
|
|
V ti = VDUPH(tx);
|
|
tr = VMUL(sr, tr);
|
|
sr = VBYI(sr);
|
|
return VFNMS(ti, sr, tr);
|
|
}
|
|
|
|
static inline V VZMULI(V tx, V sr)
|
|
{
|
|
V tr = VDUPL(tx);
|
|
V ti = VDUPH(tx);
|
|
ti = VMUL(ti, sr);
|
|
sr = VBYI(sr);
|
|
return VFMS(tr, sr, ti);
|
|
}
|
|
|
|
static inline V VZMULIJ(V tx, V sr)
|
|
{
|
|
V tr = VDUPL(tx);
|
|
V ti = VDUPH(tx);
|
|
ti = VMUL(ti, sr);
|
|
sr = VBYI(sr);
|
|
return VFMA(tr, sr, ti);
|
|
}
|
|
|
|
/* twiddle storage #1: compact, slower */
|
|
#ifdef FFTW_SINGLE
|
|
# define VTW1(v,x) \
|
|
{TW_CEXP, v, x}, {TW_CEXP, v+1, x}
|
|
static inline V BYTW1(const R *t, V sr)
|
|
{
|
|
return VZMUL(LDA(t, 2, t), sr);
|
|
}
|
|
static inline V BYTWJ1(const R *t, V sr)
|
|
{
|
|
return VZMULJ(LDA(t, 2, t), sr);
|
|
}
|
|
#else /* !FFTW_SINGLE */
|
|
# define VTW1(v,x) {TW_CEXP, v, x}
|
|
static inline V BYTW1(const R *t, V sr)
|
|
{
|
|
V tx = LD(t, 1, t);
|
|
return VZMUL(tx, sr);
|
|
}
|
|
static inline V BYTWJ1(const R *t, V sr)
|
|
{
|
|
V tx = LD(t, 1, t);
|
|
return VZMULJ(tx, sr);
|
|
}
|
|
#endif
|
|
#define TWVL1 (VL)
|
|
|
|
/* twiddle storage #2: twice the space, faster (when in cache) */
|
|
#ifdef FFTW_SINGLE
|
|
# define VTW2(v,x) \
|
|
{TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
|
|
{TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
|
|
#else /* !FFTW_SINGLE */
|
|
# define VTW2(v,x) \
|
|
{TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
|
|
#endif
|
|
#define TWVL2 (2 * VL)
|
|
static inline V BYTW2(const R *t, V sr)
|
|
{
|
|
const V *twp = (const V *)t;
|
|
V si = FLIP_RI(sr);
|
|
V tr = twp[0], ti = twp[1];
|
|
return VFMA(tr, sr, VMUL(ti, si));
|
|
}
|
|
static inline V BYTWJ2(const R *t, V sr)
|
|
{
|
|
const V *twp = (const V *)t;
|
|
V si = FLIP_RI(sr);
|
|
V tr = twp[0], ti = twp[1];
|
|
return VFNMS(ti, si, VMUL(tr, sr));
|
|
}
|
|
|
|
/* twiddle storage #3 */
|
|
#ifdef FFTW_SINGLE
|
|
# define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
|
|
# define TWVL3 (VL)
|
|
#else
|
|
# define VTW3(v,x) VTW1(v,x)
|
|
# define TWVL3 TWVL1
|
|
#endif
|
|
|
|
/* twiddle storage for split arrays */
|
|
#ifdef FFTW_SINGLE
|
|
# define VTWS(v,x) \
|
|
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
|
|
{TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
|
|
#else
|
|
# define VTWS(v,x) \
|
|
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
|
|
#endif
|
|
#define TWVLS (2 * VL)
|
|
|
|
#define VLEAVE() /* nothing */
|
|
|
|
#include "simd-common.h"
|