furnace/extern/fftw/rdft/simd/common/hc2cfdftv_8.c
2022-05-31 03:24:29 -05:00

231 lines
8.9 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:47:22 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include rdft/simd/hc2cfv.h */
/*
* This function contains 41 FP additions, 40 FP multiplications,
* (or, 23 additions, 22 multiplications, 18 fused multiply/add),
* 52 stack variables, 2 constants, and 16 memory accesses
*/
#include "rdft/simd/hc2cfv.h"
static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT m;
for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
V T8, Tt, TG, TF, TD, TC, Tn, Tu, T3, Tc, Tl, Ts, T7, Ta, Th;
V Tq, T1, T2, Tb, Tj, Tk, Ti, Tr, T5, T6, T4, T9, Tf, Tg, Te;
V Tp, Td, Tm, Tw, Tx, To, Tv, TM, TN, TK, TL, TA, TB, Ty, Tz;
V TI, TJ, TE, TH;
T1 = LD(&(Rp[0]), ms, &(Rp[0]));
T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
T3 = VFMACONJ(T2, T1);
Tb = LDW(&(W[0]));
Tc = VZMULIJ(Tb, VFNMSCONJ(T2, T1));
Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
Tk = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Ti = LDW(&(W[TWVL * 12]));
Tl = VZMULIJ(Ti, VFNMSCONJ(Tk, Tj));
Tr = LDW(&(W[TWVL * 10]));
Ts = VZMULJ(Tr, VFMACONJ(Tk, Tj));
T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
T4 = LDW(&(W[TWVL * 6]));
T7 = VZMULJ(T4, VFMACONJ(T6, T5));
T9 = LDW(&(W[TWVL * 8]));
Ta = VZMULIJ(T9, VFNMSCONJ(T6, T5));
Tf = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Tg = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Te = LDW(&(W[TWVL * 4]));
Th = VZMULIJ(Te, VFNMSCONJ(Tg, Tf));
Tp = LDW(&(W[TWVL * 2]));
Tq = VZMULJ(Tp, VFMACONJ(Tg, Tf));
T8 = VSUB(T3, T7);
Tt = VSUB(Tq, Ts);
TG = VADD(Th, Tl);
TF = VADD(Tc, Ta);
TD = VADD(Tq, Ts);
TC = VADD(T3, T7);
Td = VSUB(Ta, Tc);
Tm = VSUB(Th, Tl);
Tn = VADD(Td, Tm);
Tu = VSUB(Tm, Td);
To = VFMA(LDK(KP707106781), Tn, T8);
Tv = VFNMS(LDK(KP707106781), Tu, Tt);
Tw = VMUL(LDK(KP500000000), VFNMSI(Tv, To));
Tx = VCONJ(VMUL(LDK(KP500000000), VFMAI(Tv, To)));
ST(&(Rp[WS(rs, 1)]), Tw, ms, &(Rp[WS(rs, 1)]));
ST(&(Rm[0]), Tx, -ms, &(Rm[0]));
TK = VADD(TC, TD);
TL = VADD(TF, TG);
TM = VMUL(LDK(KP500000000), VSUB(TK, TL));
TN = VCONJ(VMUL(LDK(KP500000000), VADD(TL, TK)));
ST(&(Rp[0]), TM, ms, &(Rp[0]));
ST(&(Rm[WS(rs, 3)]), TN, -ms, &(Rm[WS(rs, 1)]));
Ty = VFNMS(LDK(KP707106781), Tn, T8);
Tz = VFMA(LDK(KP707106781), Tu, Tt);
TA = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tz, Ty)));
TB = VMUL(LDK(KP500000000), VFMAI(Tz, Ty));
ST(&(Rm[WS(rs, 2)]), TA, -ms, &(Rm[0]));
ST(&(Rp[WS(rs, 3)]), TB, ms, &(Rp[WS(rs, 1)]));
TE = VSUB(TC, TD);
TH = VSUB(TF, TG);
TI = VMUL(LDK(KP500000000), VFMAI(TH, TE));
TJ = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TH, TE)));
ST(&(Rp[WS(rs, 2)]), TI, ms, &(Rp[0]));
ST(&(Rm[WS(rs, 1)]), TJ, -ms, &(Rm[WS(rs, 1)]));
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(1, 1),
VTW(1, 2),
VTW(1, 3),
VTW(1, 4),
VTW(1, 5),
VTW(1, 6),
VTW(1, 7),
{ TW_NEXT, VL, 0 }
};
static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, { 23, 22, 18, 0 } };
void XSIMD(codelet_hc2cfdftv_8) (planner *p) {
X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT);
}
#else
/* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include rdft/simd/hc2cfv.h */
/*
* This function contains 41 FP additions, 23 FP multiplications,
* (or, 41 additions, 23 multiplications, 0 fused multiply/add),
* 57 stack variables, 3 constants, and 16 memory accesses
*/
#include "rdft/simd/hc2cfv.h"
static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
DVK(KP353553390, +0.353553390593273762200422181052424519642417969);
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
V Ta, TE, Tr, TF, Tl, TK, Tw, TG, T1, T6, T3, T8, T2, T7, T4;
V T9, T5, To, Tq, Tn, Tp, Tc, Th, Te, Tj, Td, Ti, Tf, Tk, Tb;
V Tg, Tt, Tv, Ts, Tu, Ty, Tz, Tm, Tx, TC, TD, TA, TB, TI, TO;
V TL, TP, TH, TJ, TM, TR, TN, TQ;
T1 = LD(&(Rp[0]), ms, &(Rp[0]));
T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
T3 = VCONJ(T2);
T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
T8 = VCONJ(T7);
T4 = VADD(T1, T3);
T5 = LDW(&(W[TWVL * 6]));
T9 = VZMULJ(T5, VADD(T6, T8));
Ta = VADD(T4, T9);
TE = VMUL(LDK(KP500000000), VSUB(T4, T9));
Tn = LDW(&(W[0]));
To = VZMULIJ(Tn, VSUB(T3, T1));
Tp = LDW(&(W[TWVL * 8]));
Tq = VZMULIJ(Tp, VSUB(T8, T6));
Tr = VADD(To, Tq);
TF = VSUB(To, Tq);
Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Th = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Te = VCONJ(Td);
Ti = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Tj = VCONJ(Ti);
Tb = LDW(&(W[TWVL * 2]));
Tf = VZMULJ(Tb, VADD(Tc, Te));
Tg = LDW(&(W[TWVL * 10]));
Tk = VZMULJ(Tg, VADD(Th, Tj));
Tl = VADD(Tf, Tk);
TK = VSUB(Tf, Tk);
Ts = LDW(&(W[TWVL * 4]));
Tt = VZMULIJ(Ts, VSUB(Te, Tc));
Tu = LDW(&(W[TWVL * 12]));
Tv = VZMULIJ(Tu, VSUB(Tj, Th));
Tw = VADD(Tt, Tv);
TG = VSUB(Tv, Tt);
Tm = VADD(Ta, Tl);
Tx = VADD(Tr, Tw);
Ty = VCONJ(VMUL(LDK(KP500000000), VSUB(Tm, Tx)));
Tz = VMUL(LDK(KP500000000), VADD(Tm, Tx));
ST(&(Rm[WS(rs, 3)]), Ty, -ms, &(Rm[WS(rs, 1)]));
ST(&(Rp[0]), Tz, ms, &(Rp[0]));
TA = VSUB(Ta, Tl);
TB = VBYI(VSUB(Tw, Tr));
TC = VCONJ(VMUL(LDK(KP500000000), VSUB(TA, TB)));
TD = VMUL(LDK(KP500000000), VADD(TA, TB));
ST(&(Rm[WS(rs, 1)]), TC, -ms, &(Rm[WS(rs, 1)]));
ST(&(Rp[WS(rs, 2)]), TD, ms, &(Rp[0]));
TH = VMUL(LDK(KP353553390), VADD(TF, TG));
TI = VADD(TE, TH);
TO = VSUB(TE, TH);
TJ = VMUL(LDK(KP707106781), VSUB(TG, TF));
TL = VMUL(LDK(KP500000000), VBYI(VSUB(TJ, TK)));
TP = VMUL(LDK(KP500000000), VBYI(VADD(TK, TJ)));
TM = VCONJ(VSUB(TI, TL));
ST(&(Rm[0]), TM, -ms, &(Rm[0]));
TR = VADD(TO, TP);
ST(&(Rp[WS(rs, 3)]), TR, ms, &(Rp[WS(rs, 1)]));
TN = VADD(TI, TL);
ST(&(Rp[WS(rs, 1)]), TN, ms, &(Rp[WS(rs, 1)]));
TQ = VCONJ(VSUB(TO, TP));
ST(&(Rm[WS(rs, 2)]), TQ, -ms, &(Rm[0]));
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(1, 1),
VTW(1, 2),
VTW(1, 3),
VTW(1, 4),
VTW(1, 5),
VTW(1, 6),
VTW(1, 7),
{ TW_NEXT, VL, 0 }
};
static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, { 41, 23, 0, 0 } };
void XSIMD(codelet_hc2cfdftv_8) (planner *p) {
X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT);
}
#endif