furnace/extern/fftw/rdft/scalar/r2cf/r2cfII_32.c
2022-05-31 03:24:29 -05:00

686 lines
20 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:25 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 32 -name r2cfII_32 -dft-II -include rdft/scalar/r2cfII.h */
/*
* This function contains 174 FP additions, 128 FP multiplications,
* (or, 46 additions, 0 multiplications, 128 fused multiply/add),
* 62 stack variables, 15 constants, and 64 memory accesses
*/
#include "rdft/scalar/r2cfII.h"
static void r2cfII_32(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP773010453, +0.773010453362736960810906609758469800971041293);
DK(KP820678790, +0.820678790828660330972281985331011598767386482);
DK(KP956940335, +0.956940335732208864935797886980269969482849206);
DK(KP303346683, +0.303346683607342391675883946941299872384187453);
DK(KP995184726, +0.995184726672196886244836953109479921575474869);
DK(KP098491403, +0.098491403357164253077197521291327432293052451);
DK(KP980785280, +0.980785280403230449126182236134239036973933731);
DK(KP881921264, +0.881921264348355029712756863660388349508442621);
DK(KP534511135, +0.534511135950791641089685961295362908582039528);
DK(KP831469612, +0.831469612302545237078788377617905756738560812);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP198912367, +0.198912367379658006911597622644676228597850501);
DK(KP668178637, +0.668178637919298919997757686523080761552472251);
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(128, rs), MAKE_VOLATILE_STRIDE(128, csr), MAKE_VOLATILE_STRIDE(128, csi)) {
E T5, T2B, T1z, T2n, Tc, T2C, T1C, T2o, Tm, T1l, T1J, T27, Tv, T1k, T1G;
E T26, T15, T1r, T1Y, T2e, T1c, T1s, T1V, T2d, TK, T1o, T1R, T2b, TR, T1p;
E T1O, T2a;
{
E T1, T2l, T4, T2m, T2, T3;
T1 = R0[0];
T2l = R0[WS(rs, 8)];
T2 = R0[WS(rs, 4)];
T3 = R0[WS(rs, 12)];
T4 = T2 - T3;
T2m = T2 + T3;
T5 = FNMS(KP707106781, T4, T1);
T2B = FNMS(KP707106781, T2m, T2l);
T1z = FMA(KP707106781, T4, T1);
T2n = FMA(KP707106781, T2m, T2l);
}
{
E T8, T1A, Tb, T1B;
{
E T6, T7, T9, Ta;
T6 = R0[WS(rs, 10)];
T7 = R0[WS(rs, 2)];
T8 = FMA(KP414213562, T7, T6);
T1A = FNMS(KP414213562, T6, T7);
T9 = R0[WS(rs, 6)];
Ta = R0[WS(rs, 14)];
Tb = FMA(KP414213562, Ta, T9);
T1B = FMS(KP414213562, T9, Ta);
}
Tc = T8 - Tb;
T2C = T1B - T1A;
T1C = T1A + T1B;
T2o = T8 + Tb;
}
{
E Te, Tj, Th, Tk, Tf, Tg;
Te = R0[WS(rs, 7)];
Tj = R0[WS(rs, 15)];
Tf = R0[WS(rs, 3)];
Tg = R0[WS(rs, 11)];
Th = Tf + Tg;
Tk = Tg - Tf;
{
E Ti, Tl, T1H, T1I;
Ti = FNMS(KP707106781, Th, Te);
Tl = FNMS(KP707106781, Tk, Tj);
Tm = FNMS(KP668178637, Tl, Ti);
T1l = FMA(KP668178637, Ti, Tl);
T1H = FMA(KP707106781, Th, Te);
T1I = FMA(KP707106781, Tk, Tj);
T1J = FMA(KP198912367, T1I, T1H);
T27 = FNMS(KP198912367, T1H, T1I);
}
}
{
E Tn, Ts, Tq, Tt, To, Tp;
Tn = R0[WS(rs, 9)];
Ts = R0[WS(rs, 1)];
To = R0[WS(rs, 5)];
Tp = R0[WS(rs, 13)];
Tq = To + Tp;
Tt = To - Tp;
{
E Tr, Tu, T1E, T1F;
Tr = FNMS(KP707106781, Tq, Tn);
Tu = FNMS(KP707106781, Tt, Ts);
Tv = FNMS(KP668178637, Tu, Tr);
T1k = FMA(KP668178637, Tr, Tu);
T1E = FMA(KP707106781, Tq, Tn);
T1F = FMA(KP707106781, Tt, Ts);
T1G = FMA(KP198912367, T1F, T1E);
T26 = FNMS(KP198912367, T1E, T1F);
}
}
{
E TT, T16, TW, T17, T10, T1a, T13, T19, TU, TV;
TT = R1[WS(rs, 15)];
T16 = R1[WS(rs, 7)];
TU = R1[WS(rs, 3)];
TV = R1[WS(rs, 11)];
TW = TU - TV;
T17 = TU + TV;
{
E TY, TZ, T11, T12;
TY = R1[WS(rs, 9)];
TZ = R1[WS(rs, 1)];
T10 = FMA(KP414213562, TZ, TY);
T1a = FNMS(KP414213562, TY, TZ);
T11 = R1[WS(rs, 5)];
T12 = R1[WS(rs, 13)];
T13 = FMA(KP414213562, T12, T11);
T19 = FMS(KP414213562, T11, T12);
}
{
E TX, T14, T1W, T1X;
TX = FMA(KP707106781, TW, TT);
T14 = T10 - T13;
T15 = FMA(KP923879532, T14, TX);
T1r = FNMS(KP923879532, T14, TX);
T1W = FMA(KP707106781, T17, T16);
T1X = T10 + T13;
T1Y = FNMS(KP923879532, T1X, T1W);
T2e = FMA(KP923879532, T1X, T1W);
}
{
E T18, T1b, T1T, T1U;
T18 = FNMS(KP707106781, T17, T16);
T1b = T19 - T1a;
T1c = FNMS(KP923879532, T1b, T18);
T1s = FMA(KP923879532, T1b, T18);
T1T = FMS(KP707106781, TW, TT);
T1U = T1a + T19;
T1V = FNMS(KP923879532, T1U, T1T);
T2d = FMA(KP923879532, T1U, T1T);
}
}
{
E Ty, TL, TB, TM, TF, TP, TI, TO, Tz, TA;
Ty = R1[0];
TL = R1[WS(rs, 8)];
Tz = R1[WS(rs, 4)];
TA = R1[WS(rs, 12)];
TB = Tz - TA;
TM = Tz + TA;
{
E TD, TE, TG, TH;
TD = R1[WS(rs, 10)];
TE = R1[WS(rs, 2)];
TF = FMA(KP414213562, TE, TD);
TP = FNMS(KP414213562, TD, TE);
TG = R1[WS(rs, 6)];
TH = R1[WS(rs, 14)];
TI = FMA(KP414213562, TH, TG);
TO = FMS(KP414213562, TG, TH);
}
{
E TC, TJ, T1P, T1Q;
TC = FNMS(KP707106781, TB, Ty);
TJ = TF - TI;
TK = FNMS(KP923879532, TJ, TC);
T1o = FMA(KP923879532, TJ, TC);
T1P = FMA(KP707106781, TM, TL);
T1Q = TF + TI;
T1R = FNMS(KP923879532, T1Q, T1P);
T2b = FMA(KP923879532, T1Q, T1P);
}
{
E TN, TQ, T1M, T1N;
TN = FNMS(KP707106781, TM, TL);
TQ = TO - TP;
TR = FNMS(KP923879532, TQ, TN);
T1p = FMA(KP923879532, TQ, TN);
T1M = FMA(KP707106781, TB, Ty);
T1N = TP + TO;
T1O = FNMS(KP923879532, T1N, T1M);
T2a = FMA(KP923879532, T1N, T1M);
}
}
{
E Tx, T1f, T2L, T2N, T1e, T2O, T1i, T2M;
{
E Td, Tw, T2J, T2K;
Td = FNMS(KP923879532, Tc, T5);
Tw = Tm - Tv;
Tx = FMA(KP831469612, Tw, Td);
T1f = FNMS(KP831469612, Tw, Td);
T2J = FNMS(KP923879532, T2C, T2B);
T2K = T1k + T1l;
T2L = FMA(KP831469612, T2K, T2J);
T2N = FNMS(KP831469612, T2K, T2J);
}
{
E TS, T1d, T1g, T1h;
TS = FNMS(KP534511135, TR, TK);
T1d = FNMS(KP534511135, T1c, T15);
T1e = TS - T1d;
T2O = TS + T1d;
T1g = FMA(KP534511135, TK, TR);
T1h = FMA(KP534511135, T15, T1c);
T1i = T1g - T1h;
T2M = T1g + T1h;
}
Cr[WS(csr, 13)] = FNMS(KP881921264, T1e, Tx);
Ci[WS(csi, 13)] = FNMS(KP881921264, T2M, T2L);
Cr[WS(csr, 2)] = FMA(KP881921264, T1e, Tx);
Ci[WS(csi, 2)] = -(FMA(KP881921264, T2M, T2L));
Cr[WS(csr, 10)] = FNMS(KP881921264, T1i, T1f);
Ci[WS(csi, 10)] = -(FMA(KP881921264, T2O, T2N));
Cr[WS(csr, 5)] = FMA(KP881921264, T1i, T1f);
Ci[WS(csi, 5)] = FNMS(KP881921264, T2O, T2N);
}
{
E T29, T2h, T2r, T2t, T2g, T2u, T2k, T2s;
{
E T25, T28, T2p, T2q;
T25 = FMA(KP923879532, T1C, T1z);
T28 = T26 - T27;
T29 = FMA(KP980785280, T28, T25);
T2h = FNMS(KP980785280, T28, T25);
T2p = FMA(KP923879532, T2o, T2n);
T2q = T1G + T1J;
T2r = FMA(KP980785280, T2q, T2p);
T2t = FNMS(KP980785280, T2q, T2p);
}
{
E T2c, T2f, T2i, T2j;
T2c = FNMS(KP098491403, T2b, T2a);
T2f = FMA(KP098491403, T2e, T2d);
T2g = T2c + T2f;
T2u = T2f - T2c;
T2i = FMA(KP098491403, T2a, T2b);
T2j = FNMS(KP098491403, T2d, T2e);
T2k = T2i - T2j;
T2s = T2i + T2j;
}
Cr[WS(csr, 15)] = FNMS(KP995184726, T2g, T29);
Ci[WS(csi, 15)] = FNMS(KP995184726, T2s, T2r);
Cr[0] = FMA(KP995184726, T2g, T29);
Ci[0] = -(FMA(KP995184726, T2s, T2r));
Cr[WS(csr, 8)] = FNMS(KP995184726, T2k, T2h);
Ci[WS(csi, 8)] = FMS(KP995184726, T2u, T2t);
Cr[WS(csr, 7)] = FMA(KP995184726, T2k, T2h);
Ci[WS(csi, 7)] = FMA(KP995184726, T2u, T2t);
}
{
E T1n, T1v, T2F, T2H, T1u, T2I, T1y, T2G;
{
E T1j, T1m, T2D, T2E;
T1j = FMA(KP923879532, Tc, T5);
T1m = T1k - T1l;
T1n = FMA(KP831469612, T1m, T1j);
T1v = FNMS(KP831469612, T1m, T1j);
T2D = FMA(KP923879532, T2C, T2B);
T2E = Tv + Tm;
T2F = FMA(KP831469612, T2E, T2D);
T2H = FNMS(KP831469612, T2E, T2D);
}
{
E T1q, T1t, T1w, T1x;
T1q = FMA(KP303346683, T1p, T1o);
T1t = FMA(KP303346683, T1s, T1r);
T1u = T1q - T1t;
T2I = T1q + T1t;
T1w = FNMS(KP303346683, T1r, T1s);
T1x = FNMS(KP303346683, T1o, T1p);
T1y = T1w - T1x;
T2G = T1x + T1w;
}
Cr[WS(csr, 14)] = FNMS(KP956940335, T1u, T1n);
Ci[WS(csi, 14)] = FMS(KP956940335, T2G, T2F);
Cr[WS(csr, 1)] = FMA(KP956940335, T1u, T1n);
Ci[WS(csi, 1)] = FMA(KP956940335, T2G, T2F);
Cr[WS(csr, 9)] = FNMS(KP956940335, T1y, T1v);
Ci[WS(csi, 9)] = FNMS(KP956940335, T2I, T2H);
Cr[WS(csr, 6)] = FMA(KP956940335, T1y, T1v);
Ci[WS(csi, 6)] = -(FMA(KP956940335, T2I, T2H));
}
{
E T1L, T21, T2x, T2z, T20, T2A, T24, T2y;
{
E T1D, T1K, T2v, T2w;
T1D = FNMS(KP923879532, T1C, T1z);
T1K = T1G - T1J;
T1L = FMA(KP980785280, T1K, T1D);
T21 = FNMS(KP980785280, T1K, T1D);
T2v = FNMS(KP923879532, T2o, T2n);
T2w = T26 + T27;
T2x = FNMS(KP980785280, T2w, T2v);
T2z = FMA(KP980785280, T2w, T2v);
}
{
E T1S, T1Z, T22, T23;
T1S = FMA(KP820678790, T1R, T1O);
T1Z = FNMS(KP820678790, T1Y, T1V);
T20 = T1S + T1Z;
T2A = T1Z - T1S;
T22 = FMA(KP820678790, T1V, T1Y);
T23 = FNMS(KP820678790, T1O, T1R);
T24 = T22 - T23;
T2y = T23 + T22;
}
Cr[WS(csr, 12)] = FNMS(KP773010453, T20, T1L);
Ci[WS(csi, 12)] = FMS(KP773010453, T2y, T2x);
Cr[WS(csr, 3)] = FMA(KP773010453, T20, T1L);
Ci[WS(csi, 3)] = FMA(KP773010453, T2y, T2x);
Cr[WS(csr, 11)] = FNMS(KP773010453, T24, T21);
Ci[WS(csi, 11)] = FMA(KP773010453, T2A, T2z);
Cr[WS(csr, 4)] = FMA(KP773010453, T24, T21);
Ci[WS(csi, 4)] = FMS(KP773010453, T2A, T2z);
}
}
}
}
static const kr2c_desc desc = { 32, "r2cfII_32", { 46, 0, 128, 0 }, &GENUS };
void X(codelet_r2cfII_32) (planner *p) { X(kr2c_register) (p, r2cfII_32, &desc);
}
#else
/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 32 -name r2cfII_32 -dft-II -include rdft/scalar/r2cfII.h */
/*
* This function contains 174 FP additions, 82 FP multiplications,
* (or, 138 additions, 46 multiplications, 36 fused multiply/add),
* 62 stack variables, 15 constants, and 64 memory accesses
*/
#include "rdft/scalar/r2cfII.h"
static void r2cfII_32(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP471396736, +0.471396736825997648556387625905254377657460319);
DK(KP881921264, +0.881921264348355029712756863660388349508442621);
DK(KP634393284, +0.634393284163645498215171613225493370675687095);
DK(KP773010453, +0.773010453362736960810906609758469800971041293);
DK(KP290284677, +0.290284677254462367636192375817395274691476278);
DK(KP956940335, +0.956940335732208864935797886980269969482849206);
DK(KP995184726, +0.995184726672196886244836953109479921575474869);
DK(KP098017140, +0.098017140329560601994195563888641845861136673);
DK(KP555570233, +0.555570233019602224742830813948532874374937191);
DK(KP831469612, +0.831469612302545237078788377617905756738560812);
DK(KP195090322, +0.195090322016128267848284868477022240927691618);
DK(KP980785280, +0.980785280403230449126182236134239036973933731);
DK(KP382683432, +0.382683432365089771728459984030398866761344562);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(128, rs), MAKE_VOLATILE_STRIDE(128, csr), MAKE_VOLATILE_STRIDE(128, csi)) {
E T5, T2D, T1z, T2q, Tc, T2C, T1C, T2n, Tm, T1k, T1J, T26, Tv, T1l, T1G;
E T27, T15, T1r, T1Y, T2e, T1c, T1s, T1V, T2d, TK, T1o, T1R, T2b, TR, T1p;
E T1O, T2a;
{
E T1, T2p, T4, T2o, T2, T3;
T1 = R0[0];
T2p = R0[WS(rs, 8)];
T2 = R0[WS(rs, 4)];
T3 = R0[WS(rs, 12)];
T4 = KP707106781 * (T2 - T3);
T2o = KP707106781 * (T2 + T3);
T5 = T1 + T4;
T2D = T2p - T2o;
T1z = T1 - T4;
T2q = T2o + T2p;
}
{
E T8, T1A, Tb, T1B;
{
E T6, T7, T9, Ta;
T6 = R0[WS(rs, 2)];
T7 = R0[WS(rs, 10)];
T8 = FNMS(KP382683432, T7, KP923879532 * T6);
T1A = FMA(KP382683432, T6, KP923879532 * T7);
T9 = R0[WS(rs, 6)];
Ta = R0[WS(rs, 14)];
Tb = FNMS(KP923879532, Ta, KP382683432 * T9);
T1B = FMA(KP923879532, T9, KP382683432 * Ta);
}
Tc = T8 + Tb;
T2C = Tb - T8;
T1C = T1A - T1B;
T2n = T1A + T1B;
}
{
E Te, Tk, Th, Tj, Tf, Tg;
Te = R0[WS(rs, 1)];
Tk = R0[WS(rs, 9)];
Tf = R0[WS(rs, 5)];
Tg = R0[WS(rs, 13)];
Th = KP707106781 * (Tf - Tg);
Tj = KP707106781 * (Tf + Tg);
{
E Ti, Tl, T1H, T1I;
Ti = Te + Th;
Tl = Tj + Tk;
Tm = FNMS(KP195090322, Tl, KP980785280 * Ti);
T1k = FMA(KP195090322, Ti, KP980785280 * Tl);
T1H = Tk - Tj;
T1I = Te - Th;
T1J = FNMS(KP555570233, T1I, KP831469612 * T1H);
T26 = FMA(KP831469612, T1I, KP555570233 * T1H);
}
}
{
E Tq, Tt, Tp, Ts, Tn, To;
Tq = R0[WS(rs, 15)];
Tt = R0[WS(rs, 7)];
Tn = R0[WS(rs, 3)];
To = R0[WS(rs, 11)];
Tp = KP707106781 * (Tn - To);
Ts = KP707106781 * (Tn + To);
{
E Tr, Tu, T1E, T1F;
Tr = Tp - Tq;
Tu = Ts + Tt;
Tv = FMA(KP980785280, Tr, KP195090322 * Tu);
T1l = FNMS(KP980785280, Tu, KP195090322 * Tr);
T1E = Tt - Ts;
T1F = Tp + Tq;
T1G = FNMS(KP555570233, T1F, KP831469612 * T1E);
T27 = FMA(KP831469612, T1F, KP555570233 * T1E);
}
}
{
E TW, T1a, TV, T19, T10, T16, T13, T17, TT, TU;
TW = R1[WS(rs, 15)];
T1a = R1[WS(rs, 7)];
TT = R1[WS(rs, 3)];
TU = R1[WS(rs, 11)];
TV = KP707106781 * (TT - TU);
T19 = KP707106781 * (TT + TU);
{
E TY, TZ, T11, T12;
TY = R1[WS(rs, 1)];
TZ = R1[WS(rs, 9)];
T10 = FNMS(KP382683432, TZ, KP923879532 * TY);
T16 = FMA(KP382683432, TY, KP923879532 * TZ);
T11 = R1[WS(rs, 5)];
T12 = R1[WS(rs, 13)];
T13 = FNMS(KP923879532, T12, KP382683432 * T11);
T17 = FMA(KP923879532, T11, KP382683432 * T12);
}
{
E TX, T14, T1W, T1X;
TX = TV - TW;
T14 = T10 + T13;
T15 = TX + T14;
T1r = TX - T14;
T1W = T13 - T10;
T1X = T1a - T19;
T1Y = T1W - T1X;
T2e = T1W + T1X;
}
{
E T18, T1b, T1T, T1U;
T18 = T16 + T17;
T1b = T19 + T1a;
T1c = T18 + T1b;
T1s = T1b - T18;
T1T = TV + TW;
T1U = T16 - T17;
T1V = T1T + T1U;
T2d = T1U - T1T;
}
}
{
E Ty, TP, TB, TO, TF, TL, TI, TM, Tz, TA;
Ty = R1[0];
TP = R1[WS(rs, 8)];
Tz = R1[WS(rs, 4)];
TA = R1[WS(rs, 12)];
TB = KP707106781 * (Tz - TA);
TO = KP707106781 * (Tz + TA);
{
E TD, TE, TG, TH;
TD = R1[WS(rs, 2)];
TE = R1[WS(rs, 10)];
TF = FNMS(KP382683432, TE, KP923879532 * TD);
TL = FMA(KP382683432, TD, KP923879532 * TE);
TG = R1[WS(rs, 6)];
TH = R1[WS(rs, 14)];
TI = FNMS(KP923879532, TH, KP382683432 * TG);
TM = FMA(KP923879532, TG, KP382683432 * TH);
}
{
E TC, TJ, T1P, T1Q;
TC = Ty + TB;
TJ = TF + TI;
TK = TC + TJ;
T1o = TC - TJ;
T1P = TI - TF;
T1Q = TP - TO;
T1R = T1P - T1Q;
T2b = T1P + T1Q;
}
{
E TN, TQ, T1M, T1N;
TN = TL + TM;
TQ = TO + TP;
TR = TN + TQ;
T1p = TQ - TN;
T1M = Ty - TB;
T1N = TL - TM;
T1O = T1M - T1N;
T2a = T1M + T1N;
}
}
{
E Tx, T1f, T2s, T2u, T1e, T2l, T1i, T2t;
{
E Td, Tw, T2m, T2r;
Td = T5 + Tc;
Tw = Tm + Tv;
Tx = Td - Tw;
T1f = Td + Tw;
T2m = T1l - T1k;
T2r = T2n + T2q;
T2s = T2m - T2r;
T2u = T2m + T2r;
}
{
E TS, T1d, T1g, T1h;
TS = FMA(KP098017140, TK, KP995184726 * TR);
T1d = FNMS(KP995184726, T1c, KP098017140 * T15);
T1e = TS + T1d;
T2l = T1d - TS;
T1g = FNMS(KP098017140, TR, KP995184726 * TK);
T1h = FMA(KP995184726, T15, KP098017140 * T1c);
T1i = T1g + T1h;
T2t = T1h - T1g;
}
Cr[WS(csr, 8)] = Tx - T1e;
Ci[WS(csi, 8)] = T2t - T2u;
Cr[WS(csr, 7)] = Tx + T1e;
Ci[WS(csi, 7)] = T2t + T2u;
Cr[WS(csr, 15)] = T1f - T1i;
Ci[WS(csi, 15)] = T2l - T2s;
Cr[0] = T1f + T1i;
Ci[0] = T2l + T2s;
}
{
E T29, T2h, T2M, T2O, T2g, T2J, T2k, T2N;
{
E T25, T28, T2K, T2L;
T25 = T1z + T1C;
T28 = T26 - T27;
T29 = T25 + T28;
T2h = T25 - T28;
T2K = T1J + T1G;
T2L = T2C + T2D;
T2M = T2K - T2L;
T2O = T2K + T2L;
}
{
E T2c, T2f, T2i, T2j;
T2c = FMA(KP956940335, T2a, KP290284677 * T2b);
T2f = FNMS(KP290284677, T2e, KP956940335 * T2d);
T2g = T2c + T2f;
T2J = T2f - T2c;
T2i = FMA(KP290284677, T2d, KP956940335 * T2e);
T2j = FNMS(KP290284677, T2a, KP956940335 * T2b);
T2k = T2i - T2j;
T2N = T2j + T2i;
}
Cr[WS(csr, 14)] = T29 - T2g;
Ci[WS(csi, 14)] = T2N - T2O;
Cr[WS(csr, 1)] = T29 + T2g;
Ci[WS(csi, 1)] = T2N + T2O;
Cr[WS(csr, 9)] = T2h - T2k;
Ci[WS(csi, 9)] = T2J - T2M;
Cr[WS(csr, 6)] = T2h + T2k;
Ci[WS(csi, 6)] = T2J + T2M;
}
{
E T1n, T1v, T2y, T2A, T1u, T2v, T1y, T2z;
{
E T1j, T1m, T2w, T2x;
T1j = T5 - Tc;
T1m = T1k + T1l;
T1n = T1j + T1m;
T1v = T1j - T1m;
T2w = Tv - Tm;
T2x = T2q - T2n;
T2y = T2w - T2x;
T2A = T2w + T2x;
}
{
E T1q, T1t, T1w, T1x;
T1q = FMA(KP773010453, T1o, KP634393284 * T1p);
T1t = FNMS(KP634393284, T1s, KP773010453 * T1r);
T1u = T1q + T1t;
T2v = T1t - T1q;
T1w = FMA(KP634393284, T1r, KP773010453 * T1s);
T1x = FNMS(KP634393284, T1o, KP773010453 * T1p);
T1y = T1w - T1x;
T2z = T1x + T1w;
}
Cr[WS(csr, 12)] = T1n - T1u;
Ci[WS(csi, 12)] = T2z - T2A;
Cr[WS(csr, 3)] = T1n + T1u;
Ci[WS(csi, 3)] = T2z + T2A;
Cr[WS(csr, 11)] = T1v - T1y;
Ci[WS(csi, 11)] = T2v - T2y;
Cr[WS(csr, 4)] = T1v + T1y;
Ci[WS(csi, 4)] = T2v + T2y;
}
{
E T1L, T21, T2G, T2I, T20, T2H, T24, T2B;
{
E T1D, T1K, T2E, T2F;
T1D = T1z - T1C;
T1K = T1G - T1J;
T1L = T1D + T1K;
T21 = T1D - T1K;
T2E = T2C - T2D;
T2F = T26 + T27;
T2G = T2E - T2F;
T2I = T2F + T2E;
}
{
E T1S, T1Z, T22, T23;
T1S = FMA(KP881921264, T1O, KP471396736 * T1R);
T1Z = FMA(KP881921264, T1V, KP471396736 * T1Y);
T20 = T1S - T1Z;
T2H = T1S + T1Z;
T22 = FNMS(KP471396736, T1V, KP881921264 * T1Y);
T23 = FNMS(KP471396736, T1O, KP881921264 * T1R);
T24 = T22 - T23;
T2B = T23 + T22;
}
Cr[WS(csr, 13)] = T1L - T20;
Ci[WS(csi, 13)] = T2B - T2G;
Cr[WS(csr, 2)] = T1L + T20;
Ci[WS(csi, 2)] = T2B + T2G;
Cr[WS(csr, 10)] = T21 - T24;
Ci[WS(csi, 10)] = T2I - T2H;
Cr[WS(csr, 5)] = T21 + T24;
Ci[WS(csi, 5)] = -(T2H + T2I);
}
}
}
}
static const kr2c_desc desc = { 32, "r2cfII_32", { 138, 46, 36, 0 }, &GENUS };
void X(codelet_r2cfII_32) (planner *p) { X(kr2c_register) (p, r2cfII_32, &desc);
}
#endif