furnace/extern/fftw/rdft/scalar/r2cf/hc2cfdft_4.c
2022-05-31 03:24:29 -05:00

218 lines
5.9 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:36 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 4 -dit -name hc2cfdft_4 -include rdft/scalar/hc2cf.h */
/*
* This function contains 30 FP additions, 20 FP multiplications,
* (or, 24 additions, 14 multiplications, 6 fused multiply/add),
* 31 stack variables, 1 constants, and 16 memory accesses
*/
#include "rdft/scalar/hc2cf.h"
static void hc2cfdft_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) {
E Td, Tl, Tu, Tk, TC, Tf, Tj, T4, Tr, T9, To, T5, Tv, Tp, TA;
E Tb, Tc;
Tb = Ip[0];
Tc = Im[0];
Td = Tb - Tc;
Tl = Tb + Tc;
{
E Tg, Th, Ti, T1, Tn;
Tg = Rm[0];
Th = Rp[0];
Ti = Tg - Th;
Tu = Th + Tg;
Tk = W[1];
TC = Tk * Ti;
Tf = W[0];
Tj = Tf * Ti;
{
E T2, T3, T7, T8;
T2 = Ip[WS(rs, 1)];
T3 = Im[WS(rs, 1)];
T4 = T2 - T3;
Tr = T2 + T3;
T7 = Rp[WS(rs, 1)];
T8 = Rm[WS(rs, 1)];
T9 = T7 + T8;
To = T7 - T8;
}
T1 = W[2];
T5 = T1 * T4;
Tv = T1 * T9;
Tn = W[4];
Tp = Tn * To;
TA = Tn * Tr;
}
{
E Tm, TD, Ta, Tw, Ts, TB, T6, Tq;
Tm = FNMS(Tk, Tl, Tj);
TD = FMA(Tf, Tl, TC);
T6 = W[3];
Ta = FNMS(T6, T9, T5);
Tw = FMA(T6, T4, Tv);
Tq = W[5];
Ts = FMA(Tq, Tr, Tp);
TB = FNMS(Tq, To, TA);
{
E Te, Tt, TF, TG;
Te = Ta + Td;
Tt = Tm - Ts;
Ip[0] = KP500000000 * (Te + Tt);
Im[WS(rs, 1)] = KP500000000 * (Tt - Te);
TF = Tu + Tw;
TG = TB + TD;
Rm[WS(rs, 1)] = KP500000000 * (TF - TG);
Rp[0] = KP500000000 * (TF + TG);
}
{
E Tx, Ty, Tz, TE;
Tx = Tu - Tw;
Ty = Ts + Tm;
Rm[0] = KP500000000 * (Tx - Ty);
Rp[WS(rs, 1)] = KP500000000 * (Tx + Ty);
Tz = Td - Ta;
TE = TB - TD;
Ip[WS(rs, 1)] = KP500000000 * (Tz + TE);
Im[0] = KP500000000 * (TE - Tz);
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 4 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 4, "hc2cfdft_4", twinstr, &GENUS, { 24, 14, 6, 0 } };
void X(codelet_hc2cfdft_4) (planner *p) {
X(khc2c_register) (p, hc2cfdft_4, &desc, HC2C_VIA_DFT);
}
#else
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 4 -dit -name hc2cfdft_4 -include rdft/scalar/hc2cf.h */
/*
* This function contains 30 FP additions, 20 FP multiplications,
* (or, 24 additions, 14 multiplications, 6 fused multiply/add),
* 18 stack variables, 1 constants, and 16 memory accesses
*/
#include "rdft/scalar/hc2cf.h"
static void hc2cfdft_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) {
E Tc, Tr, Tk, Tx, T9, Ts, Tp, Tw;
{
E Ta, Tb, Tj, Tf, Tg, Th, Te, Ti;
Ta = Ip[0];
Tb = Im[0];
Tj = Ta + Tb;
Tf = Rm[0];
Tg = Rp[0];
Th = Tf - Tg;
Tc = Ta - Tb;
Tr = Tg + Tf;
Te = W[0];
Ti = W[1];
Tk = FNMS(Ti, Tj, Te * Th);
Tx = FMA(Ti, Th, Te * Tj);
}
{
E T4, To, T8, Tm;
{
E T2, T3, T6, T7;
T2 = Ip[WS(rs, 1)];
T3 = Im[WS(rs, 1)];
T4 = T2 - T3;
To = T2 + T3;
T6 = Rp[WS(rs, 1)];
T7 = Rm[WS(rs, 1)];
T8 = T6 + T7;
Tm = T6 - T7;
}
{
E T1, T5, Tl, Tn;
T1 = W[2];
T5 = W[3];
T9 = FNMS(T5, T8, T1 * T4);
Ts = FMA(T1, T8, T5 * T4);
Tl = W[4];
Tn = W[5];
Tp = FMA(Tl, Tm, Tn * To);
Tw = FNMS(Tn, Tm, Tl * To);
}
}
{
E Td, Tq, Tz, TA;
Td = T9 + Tc;
Tq = Tk - Tp;
Ip[0] = KP500000000 * (Td + Tq);
Im[WS(rs, 1)] = KP500000000 * (Tq - Td);
Tz = Tr + Ts;
TA = Tw + Tx;
Rm[WS(rs, 1)] = KP500000000 * (Tz - TA);
Rp[0] = KP500000000 * (Tz + TA);
}
{
E Tt, Tu, Tv, Ty;
Tt = Tr - Ts;
Tu = Tp + Tk;
Rm[0] = KP500000000 * (Tt - Tu);
Rp[WS(rs, 1)] = KP500000000 * (Tt + Tu);
Tv = Tc - T9;
Ty = Tw - Tx;
Ip[WS(rs, 1)] = KP500000000 * (Tv + Ty);
Im[0] = KP500000000 * (Ty - Tv);
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 4 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 4, "hc2cfdft_4", twinstr, &GENUS, { 24, 14, 6, 0 } };
void X(codelet_hc2cfdft_4) (planner *p) {
X(khc2c_register) (p, hc2cfdft_4, &desc, HC2C_VIA_DFT);
}
#endif