furnace/extern/fftw/rdft/scalar/r2cf/hc2cfdft2_32.c
2022-05-31 03:24:29 -05:00

2057 lines
57 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:39 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -dit -name hc2cfdft2_32 -include rdft/scalar/hc2cf.h */
/*
* This function contains 552 FP additions, 414 FP multiplications,
* (or, 300 additions, 162 multiplications, 252 fused multiply/add),
* 175 stack variables, 8 constants, and 128 memory accesses
*/
#include "rdft/scalar/hc2cf.h"
static void hc2cfdft2_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP831469612, +0.831469612302545237078788377617905756738560812);
DK(KP980785280, +0.980785280403230449126182236134239036973933731);
DK(KP198912367, +0.198912367379658006911597622644676228597850501);
DK(KP668178637, +0.668178637919298919997757686523080761552472251);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(128, rs)) {
E T1, Th, T2, T5, Ti, Tl, T4, T6, T1a, Tc, T1c, Tk, Tz, T2H, T2v;
E T1u, Tm, Ts, T15, T2W, TZ, T2l, T2q, T2R, TR, TL, T3B, T3S, T3F, T3V;
E T4E, T4Y, T4I, T51, TF, T40, T44, T2A, T4M, T4Q, T1A, T3s, T3w, T2M, T4l;
E T4p, T1g, T1H, T1F, T1d, T1h, T1O, T1n, T1I, T28, T34, T32, T25, T29, T3b;
E T2f, T35;
{
E Tj, TY, TK, Tr, T14, TQ, T1b, T24, TE, T1z;
{
E T3, T1t, Tb, Ty;
T1 = W[0];
Th = W[4];
T2 = W[2];
T5 = W[3];
T3 = T1 * T2;
T1t = T2 * Th;
Tb = T1 * T5;
Ty = T1 * Th;
Ti = W[6];
Tj = Th * Ti;
TY = T2 * Ti;
TK = T1 * Ti;
Tl = W[7];
Tr = Th * Tl;
T14 = T2 * Tl;
TQ = T1 * Tl;
T4 = W[1];
T6 = FMA(T4, T5, T3);
T1a = FNMS(T4, T5, T3);
T1b = T1a * Th;
T24 = T6 * Th;
Tc = FNMS(T4, T2, Tb);
T1c = FMA(T4, T2, Tb);
Tk = W[5];
TE = T1 * Tk;
T1z = T2 * Tk;
Tz = FNMS(T4, Tk, Ty);
T2H = FMA(T4, Tk, Ty);
T2v = FNMS(T5, Tk, T1t);
T1u = FMA(T5, Tk, T1t);
}
Tm = FMA(Tk, Tl, Tj);
Ts = FNMS(Tk, Ti, Tr);
T15 = FMA(T5, Ti, T14);
T2W = FNMS(T5, Ti, T14);
TZ = FNMS(T5, Tl, TY);
T2l = FNMS(T4, Tl, TK);
T2q = FMA(T4, Ti, TQ);
T2R = FMA(T5, Tl, TY);
TR = FNMS(T4, Ti, TQ);
TL = FMA(T4, Tl, TK);
{
E T3A, T3E, T4k, T4o;
T3A = T6 * Ti;
T3B = FNMS(Tc, Tl, T3A);
T3S = FMA(Tc, Tl, T3A);
T3E = T6 * Tl;
T3F = FMA(Tc, Ti, T3E);
T3V = FNMS(Tc, Ti, T3E);
{
E T4D, T4H, T3Z, T43;
T4D = T1a * Ti;
T4E = FNMS(T1c, Tl, T4D);
T4Y = FMA(T1c, Tl, T4D);
T4H = T1a * Tl;
T4I = FMA(T1c, Ti, T4H);
T51 = FNMS(T1c, Ti, T4H);
T3Z = Tz * Ti;
T43 = Tz * Tl;
TF = FMA(T4, Th, TE);
T40 = FMA(TF, Tl, T3Z);
T44 = FNMS(TF, Ti, T43);
}
{
E T4L, T4P, T3r, T3v;
T4L = T2v * Ti;
T4P = T2v * Tl;
T2A = FMA(T5, Th, T1z);
T4M = FMA(T2A, Tl, T4L);
T4Q = FNMS(T2A, Ti, T4P);
T3r = T1u * Ti;
T3v = T1u * Tl;
T1A = FNMS(T5, Th, T1z);
T3s = FMA(T1A, Tl, T3r);
T3w = FNMS(T1A, Ti, T3v);
}
T4k = T2H * Ti;
T4o = T2H * Tl;
T2M = FNMS(T4, Th, TE);
T4l = FMA(T2M, Tl, T4k);
T4p = FNMS(T2M, Ti, T4o);
{
E T1G, T1N, T1e, T1m, T1f;
T1f = T1a * Tk;
T1g = FMA(T1c, Th, T1f);
T1H = FNMS(T1c, Th, T1f);
T1F = FMA(T1c, Tk, T1b);
T1G = T1F * Ti;
T1N = T1F * Tl;
T1d = FNMS(T1c, Tk, T1b);
T1e = T1d * Ti;
T1m = T1d * Tl;
T1h = FMA(T1g, Tl, T1e);
T1O = FNMS(T1H, Ti, T1N);
T1n = FNMS(T1g, Ti, T1m);
T1I = FMA(T1H, Tl, T1G);
}
{
E T33, T3a, T26, T2e, T27;
T27 = T6 * Tk;
T28 = FNMS(Tc, Th, T27);
T34 = FMA(Tc, Th, T27);
T32 = FNMS(Tc, Tk, T24);
T33 = T32 * Ti;
T3a = T32 * Tl;
T25 = FMA(Tc, Tk, T24);
T26 = T25 * Ti;
T2e = T25 * Tl;
T29 = FMA(T28, Tl, T26);
T3b = FNMS(T34, Ti, T3a);
T2f = FNMS(T28, Ti, T2e);
T35 = FMA(T34, Tl, T33);
}
}
}
{
E T3j, T7Z, T5b, T93, T4d, T8J, T6B, T8V, T1T, T8l, T6e, T8r, T54, T8C, T5O;
E T8i, T31, T94, T6w, T8K, T3Y, T8U, T5g, T80, T1s, T8h, T69, T8B, T4T, T8q;
E T5J, T8k, Tx, T8a, T5y, T8d, T4s, T8E, T5Y, T8v, T2k, T82, T5m, T83, T3z;
E T8X, T6l, T8O, T2F, T86, T5r, T85, T3M, T8Y, T6q, T8R, TW, T8e, T5D, T8b;
E T4B, T8F, T63, T8y;
{
E T3i, T4b, T38, T39, T45, T4a, T6z, T58, T3e, T42, T6x, T59, T3f, T5a;
{
E T3g, T3h, T36, T37;
T3g = Ip[0];
T3h = Im[0];
T3i = T3g - T3h;
T4b = T3g + T3h;
T36 = Ip[WS(rs, 8)];
T37 = Im[WS(rs, 8)];
T38 = T36 - T37;
T39 = T35 * T38;
T45 = T36 + T37;
}
{
E T47, T48, T49, T41, T3c, T3d;
T47 = Rm[0];
T48 = Rp[0];
T49 = T47 - T48;
T4a = T1 * T49;
T6z = T4 * T49;
T58 = T48 + T47;
T3c = Rp[WS(rs, 8)];
T3d = Rm[WS(rs, 8)];
T3e = T3c + T3d;
T41 = T3d - T3c;
T42 = T40 * T41;
T6x = T44 * T41;
T59 = T35 * T3e;
}
T3f = FNMS(T3b, T3e, T39);
T3j = T3f + T3i;
T7Z = T3i - T3f;
T5a = FMA(T3b, T38, T59);
T5b = T58 + T5a;
T93 = T58 - T5a;
{
E T46, T4c, T6y, T6A;
T46 = FNMS(T44, T45, T42);
T4c = FNMS(T4, T4b, T4a);
T4d = T46 + T4c;
T8J = T4c - T46;
T6y = FMA(T40, T45, T6x);
T6A = FMA(T1, T4b, T6z);
T6B = T6y + T6A;
T8V = T6A - T6y;
}
}
{
E T1x, T4W, T1y, T6a, T1D, T4U, T4V, T5K, T1L, T52, T1M, T6c, T1R, T4Z, T50;
E T5M;
{
E T1v, T1w, T1B, T1C;
T1v = Ip[WS(rs, 3)];
T1w = Im[WS(rs, 3)];
T1x = T1v - T1w;
T4W = T1v + T1w;
T1y = T1u * T1x;
T6a = T25 * T4W;
T1B = Rp[WS(rs, 3)];
T1C = Rm[WS(rs, 3)];
T1D = T1B + T1C;
T4U = T1B - T1C;
T4V = T25 * T4U;
T5K = T1u * T1D;
}
{
E T1J, T1K, T1P, T1Q;
T1J = Ip[WS(rs, 11)];
T1K = Im[WS(rs, 11)];
T1L = T1J - T1K;
T52 = T1J + T1K;
T1M = T1I * T1L;
T6c = T4Y * T52;
T1P = Rp[WS(rs, 11)];
T1Q = Rm[WS(rs, 11)];
T1R = T1P + T1Q;
T4Z = T1P - T1Q;
T50 = T4Y * T4Z;
T5M = T1I * T1R;
}
{
E T1E, T1S, T6b, T6d;
T1E = FNMS(T1A, T1D, T1y);
T1S = FNMS(T1O, T1R, T1M);
T1T = T1E + T1S;
T8l = T1E - T1S;
T6b = FNMS(T28, T4U, T6a);
T6d = FNMS(T51, T4Z, T6c);
T6e = T6b + T6d;
T8r = T6d - T6b;
}
{
E T4X, T53, T5L, T5N;
T4X = FMA(T28, T4W, T4V);
T53 = FMA(T51, T52, T50);
T54 = T4X + T53;
T8C = T53 - T4X;
T5L = FMA(T1A, T1x, T5K);
T5N = FMA(T1O, T1L, T5M);
T5O = T5L + T5N;
T8i = T5L - T5N;
}
}
{
E T2K, T2L, T3Q, T2P, T3P, T6s, T5c, T2U, T2V, T3W, T2Z, T3U, T6u, T5e;
{
E T2I, T2J, T3O, T2N, T2O;
T2I = Ip[WS(rs, 4)];
T2J = Im[WS(rs, 4)];
T2K = T2I - T2J;
T2L = T2H * T2K;
T3Q = T2I + T2J;
T2N = Rp[WS(rs, 4)];
T2O = Rm[WS(rs, 4)];
T2P = T2N + T2O;
T3O = T2O - T2N;
T3P = Th * T3O;
T6s = Tk * T3O;
T5c = T2H * T2P;
}
{
E T2S, T2T, T3T, T2X, T2Y;
T2S = Ip[WS(rs, 12)];
T2T = Im[WS(rs, 12)];
T2U = T2S - T2T;
T2V = T2R * T2U;
T3W = T2S + T2T;
T2X = Rp[WS(rs, 12)];
T2Y = Rm[WS(rs, 12)];
T2Z = T2X + T2Y;
T3T = T2Y - T2X;
T3U = T3S * T3T;
T6u = T3V * T3T;
T5e = T2R * T2Z;
}
{
E T2Q, T30, T6t, T6v;
T2Q = FNMS(T2M, T2P, T2L);
T30 = FNMS(T2W, T2Z, T2V);
T31 = T2Q + T30;
T94 = T2Q - T30;
T6t = FMA(Th, T3Q, T6s);
T6v = FMA(T3S, T3W, T6u);
T6w = T6t + T6v;
T8K = T6t - T6v;
}
{
E T3R, T3X, T5d, T5f;
T3R = FNMS(Tk, T3Q, T3P);
T3X = FNMS(T3V, T3W, T3U);
T3Y = T3R + T3X;
T8U = T3R - T3X;
T5d = FMA(T2M, T2K, T5c);
T5f = FMA(T2W, T2U, T5e);
T5g = T5d + T5f;
T80 = T5d - T5f;
}
}
{
E T12, T4J, T13, T65, T18, T4F, T4G, T5F, T1k, T4R, T1l, T67, T1q, T4N, T4O;
E T5H;
{
E T10, T11, T16, T17;
T10 = Ip[WS(rs, 15)];
T11 = Im[WS(rs, 15)];
T12 = T10 - T11;
T4J = T10 + T11;
T13 = TZ * T12;
T65 = T4E * T4J;
T16 = Rp[WS(rs, 15)];
T17 = Rm[WS(rs, 15)];
T18 = T16 + T17;
T4F = T16 - T17;
T4G = T4E * T4F;
T5F = TZ * T18;
}
{
E T1i, T1j, T1o, T1p;
T1i = Ip[WS(rs, 7)];
T1j = Im[WS(rs, 7)];
T1k = T1i - T1j;
T4R = T1i + T1j;
T1l = T1h * T1k;
T67 = T4M * T4R;
T1o = Rp[WS(rs, 7)];
T1p = Rm[WS(rs, 7)];
T1q = T1o + T1p;
T4N = T1o - T1p;
T4O = T4M * T4N;
T5H = T1h * T1q;
}
{
E T19, T1r, T66, T68;
T19 = FNMS(T15, T18, T13);
T1r = FNMS(T1n, T1q, T1l);
T1s = T19 + T1r;
T8h = T19 - T1r;
T66 = FNMS(T4I, T4F, T65);
T68 = FNMS(T4Q, T4N, T67);
T69 = T66 + T68;
T8B = T66 - T68;
}
{
E T4K, T4S, T5G, T5I;
T4K = FMA(T4I, T4J, T4G);
T4S = FMA(T4Q, T4R, T4O);
T4T = T4K + T4S;
T8q = T4S - T4K;
T5G = FMA(T15, T12, T5F);
T5I = FMA(T1n, T1k, T5H);
T5J = T5G + T5I;
T8k = T5G - T5I;
}
}
{
E T9, T4i, Ta, T5U, Tf, T4g, T4h, T5u, Tp, T4q, Tq, T5W, Tv, T4m, T4n;
E T5w;
{
E T7, T8, Td, Te;
T7 = Ip[WS(rs, 1)];
T8 = Im[WS(rs, 1)];
T9 = T7 - T8;
T4i = T7 + T8;
Ta = T6 * T9;
T5U = T2 * T4i;
Td = Rp[WS(rs, 1)];
Te = Rm[WS(rs, 1)];
Tf = Td + Te;
T4g = Td - Te;
T4h = T2 * T4g;
T5u = T6 * Tf;
}
{
E Tn, To, Tt, Tu;
Tn = Ip[WS(rs, 9)];
To = Im[WS(rs, 9)];
Tp = Tn - To;
T4q = Tn + To;
Tq = Tm * Tp;
T5W = T4l * T4q;
Tt = Rp[WS(rs, 9)];
Tu = Rm[WS(rs, 9)];
Tv = Tt + Tu;
T4m = Tt - Tu;
T4n = T4l * T4m;
T5w = Tm * Tv;
}
{
E Tg, Tw, T5v, T5x;
Tg = FNMS(Tc, Tf, Ta);
Tw = FNMS(Ts, Tv, Tq);
Tx = Tg + Tw;
T8a = Tg - Tw;
T5v = FMA(Tc, T9, T5u);
T5x = FMA(Ts, Tp, T5w);
T5y = T5v + T5x;
T8d = T5v - T5x;
{
E T4j, T4r, T8t, T5V, T5X, T8u;
T4j = FMA(T5, T4i, T4h);
T4r = FMA(T4p, T4q, T4n);
T8t = T4r - T4j;
T5V = FNMS(T5, T4g, T5U);
T5X = FNMS(T4p, T4m, T5W);
T8u = T5V - T5X;
T4s = T4j + T4r;
T8E = T8u + T8t;
T5Y = T5V + T5X;
T8v = T8t - T8u;
}
}
}
{
E T1Y, T1Z, T3p, T22, T3o, T6h, T5i, T2c, T2d, T3x, T2i, T3u, T6j, T5k;
{
E T1W, T1X, T3n, T20, T21;
T1W = Ip[WS(rs, 2)];
T1X = Im[WS(rs, 2)];
T1Y = T1W - T1X;
T1Z = T1a * T1Y;
T3p = T1W + T1X;
T20 = Rp[WS(rs, 2)];
T21 = Rm[WS(rs, 2)];
T22 = T20 + T21;
T3n = T21 - T20;
T3o = T1F * T3n;
T6h = T1H * T3n;
T5i = T1a * T22;
}
{
E T2a, T2b, T3t, T2g, T2h;
T2a = Ip[WS(rs, 10)];
T2b = Im[WS(rs, 10)];
T2c = T2a - T2b;
T2d = T29 * T2c;
T3x = T2a + T2b;
T2g = Rp[WS(rs, 10)];
T2h = Rm[WS(rs, 10)];
T2i = T2g + T2h;
T3t = T2h - T2g;
T3u = T3s * T3t;
T6j = T3w * T3t;
T5k = T29 * T2i;
}
{
E T23, T2j, T5j, T5l;
T23 = FNMS(T1c, T22, T1Z);
T2j = FNMS(T2f, T2i, T2d);
T2k = T23 + T2j;
T82 = T23 - T2j;
T5j = FMA(T1c, T1Y, T5i);
T5l = FMA(T2f, T2c, T5k);
T5m = T5j + T5l;
T83 = T5j - T5l;
{
E T3q, T3y, T8M, T6i, T6k, T8N;
T3q = FNMS(T1H, T3p, T3o);
T3y = FNMS(T3w, T3x, T3u);
T8M = T3q - T3y;
T6i = FMA(T1F, T3p, T6h);
T6k = FMA(T3s, T3x, T6j);
T8N = T6i - T6k;
T3z = T3q + T3y;
T8X = T8M + T8N;
T6l = T6i + T6k;
T8O = T8M - T8N;
}
}
}
{
E T2o, T2p, T3G, T2t, T3D, T6m, T5n, T2y, T2z, T3K, T2D, T3J, T6o, T5p;
{
E T2m, T2n, T3C, T2r, T2s;
T2m = Ip[WS(rs, 14)];
T2n = Im[WS(rs, 14)];
T2o = T2m - T2n;
T2p = T2l * T2o;
T3G = T2m + T2n;
T2r = Rp[WS(rs, 14)];
T2s = Rm[WS(rs, 14)];
T2t = T2r + T2s;
T3C = T2s - T2r;
T3D = T3B * T3C;
T6m = T3F * T3C;
T5n = T2l * T2t;
}
{
E T2w, T2x, T3I, T2B, T2C;
T2w = Ip[WS(rs, 6)];
T2x = Im[WS(rs, 6)];
T2y = T2w - T2x;
T2z = T2v * T2y;
T3K = T2w + T2x;
T2B = Rp[WS(rs, 6)];
T2C = Rm[WS(rs, 6)];
T2D = T2B + T2C;
T3I = T2C - T2B;
T3J = T1d * T3I;
T6o = T1g * T3I;
T5p = T2v * T2D;
}
{
E T2u, T2E, T5o, T5q;
T2u = FNMS(T2q, T2t, T2p);
T2E = FNMS(T2A, T2D, T2z);
T2F = T2u + T2E;
T86 = T2u - T2E;
T5o = FMA(T2q, T2o, T5n);
T5q = FMA(T2A, T2y, T5p);
T5r = T5o + T5q;
T85 = T5o - T5q;
{
E T3H, T3L, T8P, T6n, T6p, T8Q;
T3H = FNMS(T3F, T3G, T3D);
T3L = FNMS(T1g, T3K, T3J);
T8P = T3H - T3L;
T6n = FMA(T3B, T3G, T6m);
T6p = FMA(T1d, T3K, T6o);
T8Q = T6n - T6p;
T3M = T3H + T3L;
T8Y = T8Q - T8P;
T6q = T6n + T6p;
T8R = T8P + T8Q;
}
}
}
{
E TC, T4v, TD, T5Z, TI, T4t, T4u, T5z, TO, T4z, TP, T61, TU, T4x, T4y;
E T5B;
{
E TA, TB, TG, TH;
TA = Ip[WS(rs, 5)];
TB = Im[WS(rs, 5)];
TC = TA - TB;
T4v = TA + TB;
TD = Tz * TC;
T5Z = T32 * T4v;
TG = Rp[WS(rs, 5)];
TH = Rm[WS(rs, 5)];
TI = TG + TH;
T4t = TG - TH;
T4u = T32 * T4t;
T5z = Tz * TI;
}
{
E TM, TN, TS, TT;
TM = Ip[WS(rs, 13)];
TN = Im[WS(rs, 13)];
TO = TM - TN;
T4z = TM + TN;
TP = TL * TO;
T61 = Ti * T4z;
TS = Rp[WS(rs, 13)];
TT = Rm[WS(rs, 13)];
TU = TS + TT;
T4x = TS - TT;
T4y = Ti * T4x;
T5B = TL * TU;
}
{
E TJ, TV, T5A, T5C;
TJ = FNMS(TF, TI, TD);
TV = FNMS(TR, TU, TP);
TW = TJ + TV;
T8e = TJ - TV;
T5A = FMA(TF, TC, T5z);
T5C = FMA(TR, TO, T5B);
T5D = T5A + T5C;
T8b = T5A - T5C;
{
E T4w, T4A, T8x, T60, T62, T8w;
T4w = FMA(T34, T4v, T4u);
T4A = FMA(Tl, T4z, T4y);
T8x = T4w - T4A;
T60 = FNMS(T34, T4t, T5Z);
T62 = FNMS(Tl, T4x, T61);
T8w = T62 - T60;
T4B = T4w + T4A;
T8F = T8w - T8x;
T63 = T60 + T62;
T8y = T8w + T8x;
}
}
}
{
E T1V, T6S, T3l, T6I, T5Q, T6H, T5t, T6R, T56, T6W, T6g, T6M, T4f, T6X, T6D;
E T6P;
{
E TX, T1U, T5h, T5s;
TX = Tx + TW;
T1U = T1s + T1T;
T1V = TX + T1U;
T6S = TX - T1U;
{
E T2G, T3k, T5E, T5P;
T2G = T2k + T2F;
T3k = T31 + T3j;
T3l = T2G + T3k;
T6I = T3k - T2G;
T5E = T5y + T5D;
T5P = T5J + T5O;
T5Q = T5E + T5P;
T6H = T5P - T5E;
}
T5h = T5b + T5g;
T5s = T5m + T5r;
T5t = T5h + T5s;
T6R = T5h - T5s;
{
E T4C, T55, T6L, T64, T6f, T6K;
T4C = T4s + T4B;
T55 = T4T + T54;
T6L = T4C - T55;
T64 = T5Y + T63;
T6f = T69 + T6e;
T6K = T6f - T64;
T56 = T4C + T55;
T6W = T6K - T6L;
T6g = T64 + T6f;
T6M = T6K + T6L;
}
{
E T3N, T4e, T6N, T6r, T6C, T6O;
T3N = T3z + T3M;
T4e = T3Y + T4d;
T6N = T4e - T3N;
T6r = T6l + T6q;
T6C = T6w + T6B;
T6O = T6C - T6r;
T4f = T3N + T4e;
T6X = T6N + T6O;
T6D = T6r + T6C;
T6P = T6N - T6O;
}
}
{
E T3m, T57, T6F, T6G;
T3m = T1V + T3l;
T57 = T4f - T56;
Ip[0] = KP500000000 * (T3m + T57);
Im[WS(rs, 15)] = KP500000000 * (T57 - T3m);
T6F = T5t + T5Q;
T6G = T6g + T6D;
Rm[WS(rs, 15)] = KP500000000 * (T6F - T6G);
Rp[0] = KP500000000 * (T6F + T6G);
}
{
E T5R, T5S, T5T, T6E;
T5R = T5t - T5Q;
T5S = T56 + T4f;
Rm[WS(rs, 7)] = KP500000000 * (T5R - T5S);
Rp[WS(rs, 8)] = KP500000000 * (T5R + T5S);
T5T = T3l - T1V;
T6E = T6g - T6D;
Ip[WS(rs, 8)] = KP500000000 * (T5T + T6E);
Im[WS(rs, 7)] = KP500000000 * (T6E - T5T);
}
{
E T6J, T6Q, T6Z, T70;
T6J = T6H + T6I;
T6Q = T6M + T6P;
Ip[WS(rs, 4)] = KP500000000 * (FMA(KP707106781, T6Q, T6J));
Im[WS(rs, 11)] = -(KP500000000 * (FNMS(KP707106781, T6Q, T6J)));
T6Z = T6R + T6S;
T70 = T6W + T6X;
Rm[WS(rs, 11)] = KP500000000 * (FNMS(KP707106781, T70, T6Z));
Rp[WS(rs, 4)] = KP500000000 * (FMA(KP707106781, T70, T6Z));
}
{
E T6T, T6U, T6V, T6Y;
T6T = T6R - T6S;
T6U = T6P - T6M;
Rm[WS(rs, 3)] = KP500000000 * (FNMS(KP707106781, T6U, T6T));
Rp[WS(rs, 12)] = KP500000000 * (FMA(KP707106781, T6U, T6T));
T6V = T6I - T6H;
T6Y = T6W - T6X;
Ip[WS(rs, 12)] = KP500000000 * (FMA(KP707106781, T6Y, T6V));
Im[WS(rs, 3)] = -(KP500000000 * (FNMS(KP707106781, T6Y, T6V)));
}
}
{
E T73, T7F, T7t, T7P, T7a, T7Q, T7w, T7G, T7i, T7U, T7A, T7K, T7p, T7V, T7B;
E T7N;
{
E T71, T72, T7r, T7s;
T71 = T5r - T5m;
T72 = T3j - T31;
T73 = T71 + T72;
T7F = T72 - T71;
T7r = T5b - T5g;
T7s = T2k - T2F;
T7t = T7r + T7s;
T7P = T7r - T7s;
}
{
E T76, T7u, T79, T7v;
{
E T74, T75, T77, T78;
T74 = Tx - TW;
T75 = T5y - T5D;
T76 = T74 - T75;
T7u = T75 + T74;
T77 = T5J - T5O;
T78 = T1s - T1T;
T79 = T77 + T78;
T7v = T77 - T78;
}
T7a = T76 + T79;
T7Q = T76 - T79;
T7w = T7u + T7v;
T7G = T7v - T7u;
}
{
E T7e, T7I, T7h, T7J;
{
E T7c, T7d, T7f, T7g;
T7c = T63 - T5Y;
T7d = T54 - T4T;
T7e = T7c + T7d;
T7I = T7c - T7d;
T7f = T4B - T4s;
T7g = T69 - T6e;
T7h = T7f + T7g;
T7J = T7g - T7f;
}
T7i = FMA(KP414213562, T7h, T7e);
T7U = FNMS(KP414213562, T7I, T7J);
T7A = FNMS(KP414213562, T7e, T7h);
T7K = FMA(KP414213562, T7J, T7I);
}
{
E T7l, T7L, T7o, T7M;
{
E T7j, T7k, T7m, T7n;
T7j = T6q - T6l;
T7k = T4d - T3Y;
T7l = T7j + T7k;
T7L = T7k - T7j;
T7m = T3z - T3M;
T7n = T6B - T6w;
T7o = T7m + T7n;
T7M = T7n - T7m;
}
T7p = FNMS(KP414213562, T7o, T7l);
T7V = FNMS(KP414213562, T7L, T7M);
T7B = FMA(KP414213562, T7l, T7o);
T7N = FMA(KP414213562, T7M, T7L);
}
{
E T7b, T7q, T7D, T7E;
T7b = FMA(KP707106781, T7a, T73);
T7q = T7i + T7p;
Ip[WS(rs, 2)] = KP500000000 * (FMA(KP923879532, T7q, T7b));
Im[WS(rs, 13)] = -(KP500000000 * (FNMS(KP923879532, T7q, T7b)));
T7D = FMA(KP707106781, T7w, T7t);
T7E = T7A + T7B;
Rm[WS(rs, 13)] = KP500000000 * (FNMS(KP923879532, T7E, T7D));
Rp[WS(rs, 2)] = KP500000000 * (FMA(KP923879532, T7E, T7D));
}
{
E T7x, T7y, T7z, T7C;
T7x = FNMS(KP707106781, T7w, T7t);
T7y = T7p - T7i;
Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP923879532, T7y, T7x));
Rp[WS(rs, 10)] = KP500000000 * (FMA(KP923879532, T7y, T7x));
T7z = FNMS(KP707106781, T7a, T73);
T7C = T7A - T7B;
Ip[WS(rs, 10)] = KP500000000 * (FMA(KP923879532, T7C, T7z));
Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP923879532, T7C, T7z)));
}
{
E T7H, T7O, T7X, T7Y;
T7H = FNMS(KP707106781, T7G, T7F);
T7O = T7K - T7N;
Ip[WS(rs, 14)] = KP500000000 * (FMA(KP923879532, T7O, T7H));
Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP923879532, T7O, T7H)));
T7X = FNMS(KP707106781, T7Q, T7P);
T7Y = T7U + T7V;
Rp[WS(rs, 14)] = KP500000000 * (FNMS(KP923879532, T7Y, T7X));
Rm[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T7Y, T7X));
}
{
E T7R, T7S, T7T, T7W;
T7R = FMA(KP707106781, T7Q, T7P);
T7S = T7K + T7N;
Rm[WS(rs, 9)] = KP500000000 * (FNMS(KP923879532, T7S, T7R));
Rp[WS(rs, 6)] = KP500000000 * (FMA(KP923879532, T7S, T7R));
T7T = FMA(KP707106781, T7G, T7F);
T7W = T7U - T7V;
Ip[WS(rs, 6)] = KP500000000 * (FMA(KP923879532, T7W, T7T));
Im[WS(rs, 9)] = -(KP500000000 * (FNMS(KP923879532, T7W, T7T)));
}
}
{
E T89, Tat, T9l, Ta7, T99, Taj, T9v, T9H, T8o, T9w, T9c, T9m, Ta3, Tay, Tae;
E Tao, T8I, T9A, T9g, T9q, T9O, Tau, Taa, Tak, T9W, Taz, Taf, Tar, T91, T9B;
E T9h, T9t;
{
E T81, Ta5, T88, Ta6, T84, T87;
T81 = T7Z - T80;
Ta5 = T93 - T94;
T84 = T82 - T83;
T87 = T85 + T86;
T88 = T84 + T87;
Ta6 = T84 - T87;
T89 = FMA(KP707106781, T88, T81);
Tat = FNMS(KP707106781, Ta6, Ta5);
T9l = FNMS(KP707106781, T88, T81);
Ta7 = FMA(KP707106781, Ta6, Ta5);
}
{
E T95, T9F, T98, T9G, T96, T97;
T95 = T93 + T94;
T9F = T80 + T7Z;
T96 = T83 + T82;
T97 = T85 - T86;
T98 = T96 + T97;
T9G = T97 - T96;
T99 = FMA(KP707106781, T98, T95);
Taj = FNMS(KP707106781, T9G, T9F);
T9v = FNMS(KP707106781, T98, T95);
T9H = FMA(KP707106781, T9G, T9F);
}
{
E T8g, T9a, T8n, T9b;
{
E T8c, T8f, T8j, T8m;
T8c = T8a - T8b;
T8f = T8d + T8e;
T8g = FNMS(KP414213562, T8f, T8c);
T9a = FMA(KP414213562, T8c, T8f);
T8j = T8h - T8i;
T8m = T8k + T8l;
T8n = FMA(KP414213562, T8m, T8j);
T9b = FNMS(KP414213562, T8j, T8m);
}
T8o = T8g + T8n;
T9w = T8g - T8n;
T9c = T9a + T9b;
T9m = T9b - T9a;
}
{
E T9Z, Tam, Ta2, Tan;
{
E T9X, T9Y, Ta0, Ta1;
T9X = T8r - T8q;
T9Y = T8F - T8E;
T9Z = FNMS(KP707106781, T9Y, T9X);
Tam = FMA(KP707106781, T9Y, T9X);
Ta0 = T8B - T8C;
Ta1 = T8y - T8v;
Ta2 = FNMS(KP707106781, Ta1, Ta0);
Tan = FMA(KP707106781, Ta1, Ta0);
}
Ta3 = FNMS(KP668178637, Ta2, T9Z);
Tay = FNMS(KP198912367, Tam, Tan);
Tae = FMA(KP668178637, T9Z, Ta2);
Tao = FMA(KP198912367, Tan, Tam);
}
{
E T8A, T9o, T8H, T9p;
{
E T8s, T8z, T8D, T8G;
T8s = T8q + T8r;
T8z = T8v + T8y;
T8A = FMA(KP707106781, T8z, T8s);
T9o = FNMS(KP707106781, T8z, T8s);
T8D = T8B + T8C;
T8G = T8E + T8F;
T8H = FMA(KP707106781, T8G, T8D);
T9p = FNMS(KP707106781, T8G, T8D);
}
T8I = FMA(KP198912367, T8H, T8A);
T9A = FMA(KP668178637, T9o, T9p);
T9g = FNMS(KP198912367, T8A, T8H);
T9q = FNMS(KP668178637, T9p, T9o);
}
{
E T9K, Ta9, T9N, Ta8;
{
E T9I, T9J, T9L, T9M;
T9I = T8k - T8l;
T9J = T8h + T8i;
T9K = FMA(KP414213562, T9J, T9I);
Ta9 = FNMS(KP414213562, T9I, T9J);
T9L = T8d - T8e;
T9M = T8a + T8b;
T9N = FNMS(KP414213562, T9M, T9L);
Ta8 = FMA(KP414213562, T9L, T9M);
}
T9O = T9K - T9N;
Tau = T9N + T9K;
Taa = Ta8 - Ta9;
Tak = Ta8 + Ta9;
}
{
E T9S, Tap, T9V, Taq;
{
E T9Q, T9R, T9T, T9U;
T9Q = T8K + T8J;
T9R = T8X - T8Y;
T9S = FNMS(KP707106781, T9R, T9Q);
Tap = FMA(KP707106781, T9R, T9Q);
T9T = T8V - T8U;
T9U = T8R - T8O;
T9V = FNMS(KP707106781, T9U, T9T);
Taq = FMA(KP707106781, T9U, T9T);
}
T9W = FNMS(KP668178637, T9V, T9S);
Taz = FNMS(KP198912367, Tap, Taq);
Taf = FMA(KP668178637, T9S, T9V);
Tar = FMA(KP198912367, Taq, Tap);
}
{
E T8T, T9r, T90, T9s;
{
E T8L, T8S, T8W, T8Z;
T8L = T8J - T8K;
T8S = T8O + T8R;
T8T = FMA(KP707106781, T8S, T8L);
T9r = FNMS(KP707106781, T8S, T8L);
T8W = T8U + T8V;
T8Z = T8X + T8Y;
T90 = FMA(KP707106781, T8Z, T8W);
T9s = FNMS(KP707106781, T8Z, T8W);
}
T91 = FNMS(KP198912367, T90, T8T);
T9B = FNMS(KP668178637, T9r, T9s);
T9h = FMA(KP198912367, T8T, T90);
T9t = FMA(KP668178637, T9s, T9r);
}
{
E T8p, T92, T9j, T9k;
T8p = FMA(KP923879532, T8o, T89);
T92 = T8I + T91;
Ip[WS(rs, 1)] = KP500000000 * (FMA(KP980785280, T92, T8p));
Im[WS(rs, 14)] = -(KP500000000 * (FNMS(KP980785280, T92, T8p)));
T9j = FMA(KP923879532, T9c, T99);
T9k = T9g + T9h;
Rm[WS(rs, 14)] = KP500000000 * (FNMS(KP980785280, T9k, T9j));
Rp[WS(rs, 1)] = KP500000000 * (FMA(KP980785280, T9k, T9j));
}
{
E T9d, T9e, T9f, T9i;
T9d = FNMS(KP923879532, T9c, T99);
T9e = T91 - T8I;
Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP980785280, T9e, T9d));
Rp[WS(rs, 9)] = KP500000000 * (FMA(KP980785280, T9e, T9d));
T9f = FNMS(KP923879532, T8o, T89);
T9i = T9g - T9h;
Ip[WS(rs, 9)] = KP500000000 * (FMA(KP980785280, T9i, T9f));
Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP980785280, T9i, T9f)));
}
{
E T9n, T9u, T9D, T9E;
T9n = FNMS(KP923879532, T9m, T9l);
T9u = T9q + T9t;
Ip[WS(rs, 13)] = KP500000000 * (FNMS(KP831469612, T9u, T9n));
Im[WS(rs, 2)] = -(KP500000000 * (FMA(KP831469612, T9u, T9n)));
T9D = FNMS(KP923879532, T9w, T9v);
T9E = T9A + T9B;
Rp[WS(rs, 13)] = KP500000000 * (FNMS(KP831469612, T9E, T9D));
Rm[WS(rs, 2)] = KP500000000 * (FMA(KP831469612, T9E, T9D));
}
{
E T9x, T9y, T9z, T9C;
T9x = FMA(KP923879532, T9w, T9v);
T9y = T9t - T9q;
Rm[WS(rs, 10)] = KP500000000 * (FNMS(KP831469612, T9y, T9x));
Rp[WS(rs, 5)] = KP500000000 * (FMA(KP831469612, T9y, T9x));
T9z = FMA(KP923879532, T9m, T9l);
T9C = T9A - T9B;
Ip[WS(rs, 5)] = KP500000000 * (FMA(KP831469612, T9C, T9z));
Im[WS(rs, 10)] = -(KP500000000 * (FNMS(KP831469612, T9C, T9z)));
}
{
E T9P, Ta4, Tah, Tai;
T9P = FMA(KP923879532, T9O, T9H);
Ta4 = T9W - Ta3;
Ip[WS(rs, 3)] = KP500000000 * (FMA(KP831469612, Ta4, T9P));
Im[WS(rs, 12)] = -(KP500000000 * (FNMS(KP831469612, Ta4, T9P)));
Tah = FMA(KP923879532, Taa, Ta7);
Tai = Tae + Taf;
Rm[WS(rs, 12)] = KP500000000 * (FNMS(KP831469612, Tai, Tah));
Rp[WS(rs, 3)] = KP500000000 * (FMA(KP831469612, Tai, Tah));
}
{
E Tab, Tac, Tad, Tag;
Tab = FNMS(KP923879532, Taa, Ta7);
Tac = Ta3 + T9W;
Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP831469612, Tac, Tab));
Rp[WS(rs, 11)] = KP500000000 * (FMA(KP831469612, Tac, Tab));
Tad = FNMS(KP923879532, T9O, T9H);
Tag = Tae - Taf;
Ip[WS(rs, 11)] = KP500000000 * (FMA(KP831469612, Tag, Tad));
Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP831469612, Tag, Tad)));
}
{
E Tal, Tas, TaB, TaC;
Tal = FMA(KP923879532, Tak, Taj);
Tas = Tao - Tar;
Ip[WS(rs, 15)] = KP500000000 * (FMA(KP980785280, Tas, Tal));
Im[0] = -(KP500000000 * (FNMS(KP980785280, Tas, Tal)));
TaB = FMA(KP923879532, Tau, Tat);
TaC = Tay + Taz;
Rp[WS(rs, 15)] = KP500000000 * (FNMS(KP980785280, TaC, TaB));
Rm[0] = KP500000000 * (FMA(KP980785280, TaC, TaB));
}
{
E Tav, Taw, Tax, TaA;
Tav = FNMS(KP923879532, Tau, Tat);
Taw = Tao + Tar;
Rm[WS(rs, 8)] = KP500000000 * (FNMS(KP980785280, Taw, Tav));
Rp[WS(rs, 7)] = KP500000000 * (FMA(KP980785280, Taw, Tav));
Tax = FNMS(KP923879532, Tak, Taj);
TaA = Tay - Taz;
Ip[WS(rs, 7)] = KP500000000 * (FMA(KP980785280, TaA, Tax));
Im[WS(rs, 8)] = -(KP500000000 * (FNMS(KP980785280, TaA, Tax)));
}
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_CEXP, 1, 1 },
{ TW_CEXP, 1, 3 },
{ TW_CEXP, 1, 9 },
{ TW_CEXP, 1, 27 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 32, "hc2cfdft2_32", twinstr, &GENUS, { 300, 162, 252, 0 } };
void X(codelet_hc2cfdft2_32) (planner *p) {
X(khc2c_register) (p, hc2cfdft2_32, &desc, HC2C_VIA_DFT);
}
#else
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -dit -name hc2cfdft2_32 -include rdft/scalar/hc2cf.h */
/*
* This function contains 552 FP additions, 300 FP multiplications,
* (or, 440 additions, 188 multiplications, 112 fused multiply/add),
* 166 stack variables, 9 constants, and 128 memory accesses
*/
#include "rdft/scalar/hc2cf.h"
static void hc2cfdft2_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP277785116, +0.277785116509801112371415406974266437187468595);
DK(KP415734806, +0.415734806151272618539394188808952878369280406);
DK(KP097545161, +0.097545161008064133924142434238511120463845809);
DK(KP490392640, +0.490392640201615224563091118067119518486966865);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
DK(KP191341716, +0.191341716182544885864229992015199433380672281);
DK(KP461939766, +0.461939766255643378064091594698394143411208313);
DK(KP353553390, +0.353553390593273762200422181052424519642417969);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(128, rs)) {
E T1, T4, T2, T5, T7, T1b, T1d, Td, Ti, Tk, Tj, Tl, TL, TR, T2h;
E T2O, T16, T2l, T10, T2K, Tm, Tq, T3s, T3K, T3w, T3M, T4e, T4u, T4i, T4w;
E Ty, TE, T3h, T3j, T2q, T2u, T4l, T4n, T1v, T1B, T3E, T3G, T2B, T2F, T3Y;
E T40, T1f, T1G, T1i, T1H, T1j, T1M, T1n, T1I, T23, T2U, T26, T2V, T27, T30;
E T2b, T2W;
{
E Tw, T1A, TD, T1t, Tx, T1z, TC, T1u, TJ, T15, TQ, TY, TK, T14, TP;
E TZ;
{
E T3, Tc, T6, Tb;
T1 = W[0];
T4 = W[1];
T2 = W[2];
T5 = W[3];
T3 = T1 * T2;
Tc = T4 * T2;
T6 = T4 * T5;
Tb = T1 * T5;
T7 = T3 + T6;
T1b = T3 - T6;
T1d = Tb + Tc;
Td = Tb - Tc;
Ti = W[4];
Tw = T1 * Ti;
T1A = T5 * Ti;
TD = T4 * Ti;
T1t = T2 * Ti;
Tk = W[5];
Tx = T4 * Tk;
T1z = T2 * Tk;
TC = T1 * Tk;
T1u = T5 * Tk;
Tj = W[6];
TJ = T1 * Tj;
T15 = T5 * Tj;
TQ = T4 * Tj;
TY = T2 * Tj;
Tl = W[7];
TK = T4 * Tl;
T14 = T2 * Tl;
TP = T1 * Tl;
TZ = T5 * Tl;
}
TL = TJ + TK;
TR = TP - TQ;
T2h = TJ - TK;
T2O = T14 - T15;
T16 = T14 + T15;
T2l = TP + TQ;
T10 = TY - TZ;
T2K = TY + TZ;
Tm = FMA(Ti, Tj, Tk * Tl);
Tq = FNMS(Tk, Tj, Ti * Tl);
{
E T3q, T3r, T3u, T3v;
T3q = T7 * Tj;
T3r = Td * Tl;
T3s = T3q + T3r;
T3K = T3q - T3r;
T3u = T7 * Tl;
T3v = Td * Tj;
T3w = T3u - T3v;
T3M = T3u + T3v;
}
{
E T4c, T4d, T4g, T4h;
T4c = T1b * Tj;
T4d = T1d * Tl;
T4e = T4c - T4d;
T4u = T4c + T4d;
T4g = T1b * Tl;
T4h = T1d * Tj;
T4i = T4g + T4h;
T4w = T4g - T4h;
Ty = Tw - Tx;
TE = TC + TD;
T3h = FMA(Ty, Tj, TE * Tl);
T3j = FNMS(TE, Tj, Ty * Tl);
}
T2q = T1t - T1u;
T2u = T1z + T1A;
T4l = FMA(T2q, Tj, T2u * Tl);
T4n = FNMS(T2u, Tj, T2q * Tl);
T1v = T1t + T1u;
T1B = T1z - T1A;
T3E = FMA(T1v, Tj, T1B * Tl);
T3G = FNMS(T1B, Tj, T1v * Tl);
T2B = Tw + Tx;
T2F = TC - TD;
T3Y = FMA(T2B, Tj, T2F * Tl);
T40 = FNMS(T2F, Tj, T2B * Tl);
{
E T1c, T1e, T1g, T1h;
T1c = T1b * Ti;
T1e = T1d * Tk;
T1f = T1c - T1e;
T1G = T1c + T1e;
T1g = T1b * Tk;
T1h = T1d * Ti;
T1i = T1g + T1h;
T1H = T1g - T1h;
}
T1j = FMA(T1f, Tj, T1i * Tl);
T1M = FNMS(T1H, Tj, T1G * Tl);
T1n = FNMS(T1i, Tj, T1f * Tl);
T1I = FMA(T1G, Tj, T1H * Tl);
{
E T21, T22, T24, T25;
T21 = T7 * Ti;
T22 = Td * Tk;
T23 = T21 + T22;
T2U = T21 - T22;
T24 = T7 * Tk;
T25 = Td * Ti;
T26 = T24 - T25;
T2V = T24 + T25;
}
T27 = FMA(T23, Tj, T26 * Tl);
T30 = FNMS(T2V, Tj, T2U * Tl);
T2b = FNMS(T26, Tj, T23 * Tl);
T2W = FMA(T2U, Tj, T2V * Tl);
}
{
E T38, T7l, T7S, T8Y, T7Z, T91, T3A, T6k, T4F, T83, T5C, T6n, T2T, T84, T4I;
E T7m, T2g, T4M, T4P, T2z, T3T, T6m, T7O, T7V, T7j, T87, T5v, T6j, T7L, T7U;
E T7g, T86, Tv, TW, T61, T4U, T4X, T62, T4b, T6c, T7v, T7C, T5g, T6f, T74;
E T8G, T7s, T7B, T71, T8F, T1s, T1R, T65, T51, T54, T64, T4A, T6g, T7G, T8U;
E T5n, T6d, T7b, T8J, T7z, T8R, T78, T8I;
{
E T2E, T2I, T3p, T5w, T37, T4D, T3g, T5A, T2N, T2R, T3y, T5x, T2Z, T33, T3l;
E T5z;
{
E T2C, T2D, T3o, T2G, T2H, T3n;
T2C = Ip[WS(rs, 4)];
T2D = Im[WS(rs, 4)];
T3o = T2C + T2D;
T2G = Rp[WS(rs, 4)];
T2H = Rm[WS(rs, 4)];
T3n = T2G - T2H;
T2E = T2C - T2D;
T2I = T2G + T2H;
T3p = FMA(Ti, T3n, Tk * T3o);
T5w = FNMS(Tk, T3n, Ti * T3o);
}
{
E T35, T36, T3f, T3c, T3d, T3e;
T35 = Ip[0];
T36 = Im[0];
T3f = T35 + T36;
T3c = Rm[0];
T3d = Rp[0];
T3e = T3c - T3d;
T37 = T35 - T36;
T4D = T3d + T3c;
T3g = FNMS(T4, T3f, T1 * T3e);
T5A = FMA(T4, T3e, T1 * T3f);
}
{
E T2L, T2M, T3x, T2P, T2Q, T3t;
T2L = Ip[WS(rs, 12)];
T2M = Im[WS(rs, 12)];
T3x = T2L + T2M;
T2P = Rp[WS(rs, 12)];
T2Q = Rm[WS(rs, 12)];
T3t = T2P - T2Q;
T2N = T2L - T2M;
T2R = T2P + T2Q;
T3y = FMA(T3s, T3t, T3w * T3x);
T5x = FNMS(T3w, T3t, T3s * T3x);
}
{
E T2X, T2Y, T3k, T31, T32, T3i;
T2X = Ip[WS(rs, 8)];
T2Y = Im[WS(rs, 8)];
T3k = T2X + T2Y;
T31 = Rp[WS(rs, 8)];
T32 = Rm[WS(rs, 8)];
T3i = T31 - T32;
T2Z = T2X - T2Y;
T33 = T31 + T32;
T3l = FMA(T3h, T3i, T3j * T3k);
T5z = FNMS(T3j, T3i, T3h * T3k);
}
{
E T34, T7Q, T7R, T4E, T5y, T5B;
T34 = FNMS(T30, T33, T2W * T2Z);
T38 = T34 + T37;
T7l = T37 - T34;
T7Q = T3l + T3g;
T7R = T5w - T5x;
T7S = T7Q - T7R;
T8Y = T7R + T7Q;
{
E T7X, T7Y, T3m, T3z;
T7X = T3y - T3p;
T7Y = T5A - T5z;
T7Z = T7X + T7Y;
T91 = T7Y - T7X;
T3m = T3g - T3l;
T3z = T3p + T3y;
T3A = T3m - T3z;
T6k = T3z + T3m;
}
T4E = FMA(T2W, T33, T30 * T2Z);
T4F = T4D + T4E;
T83 = T4D - T4E;
T5y = T5w + T5x;
T5B = T5z + T5A;
T5C = T5y + T5B;
T6n = T5B - T5y;
{
E T2J, T2S, T4G, T4H;
T2J = FNMS(T2F, T2I, T2B * T2E);
T2S = FNMS(T2O, T2R, T2K * T2N);
T2T = T2J + T2S;
T84 = T2J - T2S;
T4G = FMA(T2B, T2I, T2F * T2E);
T4H = FMA(T2K, T2R, T2O * T2N);
T4I = T4G + T4H;
T7m = T4G - T4H;
}
}
}
{
E T20, T5p, T3D, T4K, T2y, T5t, T3R, T4O, T2f, T5q, T3I, T4L, T2p, T5s, T3O;
E T4N;
{
E T1W, T3C, T1Z, T3B;
{
E T1U, T1V, T1X, T1Y;
T1U = Ip[WS(rs, 2)];
T1V = Im[WS(rs, 2)];
T1W = T1U - T1V;
T3C = T1U + T1V;
T1X = Rp[WS(rs, 2)];
T1Y = Rm[WS(rs, 2)];
T1Z = T1X + T1Y;
T3B = T1X - T1Y;
}
T20 = FNMS(T1d, T1Z, T1b * T1W);
T5p = FNMS(T1H, T3B, T1G * T3C);
T3D = FMA(T1G, T3B, T1H * T3C);
T4K = FMA(T1b, T1Z, T1d * T1W);
}
{
E T2t, T3Q, T2x, T3P;
{
E T2r, T2s, T2v, T2w;
T2r = Ip[WS(rs, 6)];
T2s = Im[WS(rs, 6)];
T2t = T2r - T2s;
T3Q = T2r + T2s;
T2v = Rp[WS(rs, 6)];
T2w = Rm[WS(rs, 6)];
T2x = T2v + T2w;
T3P = T2v - T2w;
}
T2y = FNMS(T2u, T2x, T2q * T2t);
T5t = FNMS(T1i, T3P, T1f * T3Q);
T3R = FMA(T1f, T3P, T1i * T3Q);
T4O = FMA(T2q, T2x, T2u * T2t);
}
{
E T2a, T3H, T2e, T3F;
{
E T28, T29, T2c, T2d;
T28 = Ip[WS(rs, 10)];
T29 = Im[WS(rs, 10)];
T2a = T28 - T29;
T3H = T28 + T29;
T2c = Rp[WS(rs, 10)];
T2d = Rm[WS(rs, 10)];
T2e = T2c + T2d;
T3F = T2c - T2d;
}
T2f = FNMS(T2b, T2e, T27 * T2a);
T5q = FNMS(T3G, T3F, T3E * T3H);
T3I = FMA(T3E, T3F, T3G * T3H);
T4L = FMA(T27, T2e, T2b * T2a);
}
{
E T2k, T3N, T2o, T3L;
{
E T2i, T2j, T2m, T2n;
T2i = Ip[WS(rs, 14)];
T2j = Im[WS(rs, 14)];
T2k = T2i - T2j;
T3N = T2i + T2j;
T2m = Rp[WS(rs, 14)];
T2n = Rm[WS(rs, 14)];
T2o = T2m + T2n;
T3L = T2m - T2n;
}
T2p = FNMS(T2l, T2o, T2h * T2k);
T5s = FNMS(T3M, T3L, T3K * T3N);
T3O = FMA(T3K, T3L, T3M * T3N);
T4N = FMA(T2h, T2o, T2l * T2k);
}
{
E T3J, T3S, T5r, T5u;
T2g = T20 + T2f;
T4M = T4K + T4L;
T4P = T4N + T4O;
T2z = T2p + T2y;
T3J = T3D + T3I;
T3S = T3O + T3R;
T3T = T3J + T3S;
T6m = T3S - T3J;
{
E T7M, T7N, T7h, T7i;
T7M = T5s - T5t;
T7N = T3R - T3O;
T7O = T7M + T7N;
T7V = T7M - T7N;
T7h = T4N - T4O;
T7i = T2p - T2y;
T7j = T7h + T7i;
T87 = T7h - T7i;
}
T5r = T5p + T5q;
T5u = T5s + T5t;
T5v = T5r + T5u;
T6j = T5u - T5r;
{
E T7J, T7K, T7e, T7f;
T7J = T3I - T3D;
T7K = T5p - T5q;
T7L = T7J - T7K;
T7U = T7K + T7J;
T7e = T20 - T2f;
T7f = T4K - T4L;
T7g = T7e - T7f;
T86 = T7f + T7e;
}
}
}
{
E Th, T5a, T3X, T4S, TV, T5e, T49, T4W, Tu, T5b, T42, T4T, TI, T5d, T46;
E T4V;
{
E Ta, T3W, Tg, T3V;
{
E T8, T9, Te, Tf;
T8 = Ip[WS(rs, 1)];
T9 = Im[WS(rs, 1)];
Ta = T8 - T9;
T3W = T8 + T9;
Te = Rp[WS(rs, 1)];
Tf = Rm[WS(rs, 1)];
Tg = Te + Tf;
T3V = Te - Tf;
}
Th = FNMS(Td, Tg, T7 * Ta);
T5a = FNMS(T5, T3V, T2 * T3W);
T3X = FMA(T2, T3V, T5 * T3W);
T4S = FMA(T7, Tg, Td * Ta);
}
{
E TO, T48, TU, T47;
{
E TM, TN, TS, TT;
TM = Ip[WS(rs, 13)];
TN = Im[WS(rs, 13)];
TO = TM - TN;
T48 = TM + TN;
TS = Rp[WS(rs, 13)];
TT = Rm[WS(rs, 13)];
TU = TS + TT;
T47 = TS - TT;
}
TV = FNMS(TR, TU, TL * TO);
T5e = FNMS(Tl, T47, Tj * T48);
T49 = FMA(Tj, T47, Tl * T48);
T4W = FMA(TL, TU, TR * TO);
}
{
E Tp, T41, Tt, T3Z;
{
E Tn, To, Tr, Ts;
Tn = Ip[WS(rs, 9)];
To = Im[WS(rs, 9)];
Tp = Tn - To;
T41 = Tn + To;
Tr = Rp[WS(rs, 9)];
Ts = Rm[WS(rs, 9)];
Tt = Tr + Ts;
T3Z = Tr - Ts;
}
Tu = FNMS(Tq, Tt, Tm * Tp);
T5b = FNMS(T40, T3Z, T3Y * T41);
T42 = FMA(T3Y, T3Z, T40 * T41);
T4T = FMA(Tm, Tt, Tq * Tp);
}
{
E TB, T45, TH, T44;
{
E Tz, TA, TF, TG;
Tz = Ip[WS(rs, 5)];
TA = Im[WS(rs, 5)];
TB = Tz - TA;
T45 = Tz + TA;
TF = Rp[WS(rs, 5)];
TG = Rm[WS(rs, 5)];
TH = TF + TG;
T44 = TF - TG;
}
TI = FNMS(TE, TH, Ty * TB);
T5d = FNMS(T2V, T44, T2U * T45);
T46 = FMA(T2U, T44, T2V * T45);
T4V = FMA(Ty, TH, TE * TB);
}
Tv = Th + Tu;
TW = TI + TV;
T61 = Tv - TW;
T4U = T4S + T4T;
T4X = T4V + T4W;
T62 = T4U - T4X;
{
E T43, T4a, T7t, T7u;
T43 = T3X + T42;
T4a = T46 + T49;
T4b = T43 + T4a;
T6c = T4a - T43;
T7t = T5e - T5d;
T7u = T46 - T49;
T7v = T7t + T7u;
T7C = T7t - T7u;
}
{
E T5c, T5f, T72, T73;
T5c = T5a + T5b;
T5f = T5d + T5e;
T5g = T5c + T5f;
T6f = T5f - T5c;
T72 = T4S - T4T;
T73 = TI - TV;
T74 = T72 + T73;
T8G = T72 - T73;
}
{
E T7q, T7r, T6Z, T70;
T7q = T42 - T3X;
T7r = T5a - T5b;
T7s = T7q - T7r;
T7B = T7r + T7q;
T6Z = Th - Tu;
T70 = T4V - T4W;
T71 = T6Z - T70;
T8F = T6Z + T70;
}
}
{
E T1a, T5h, T4k, T4Z, T1Q, T5l, T4y, T53, T1r, T5i, T4p, T50, T1F, T5k, T4t;
E T52;
{
E T13, T4j, T19, T4f;
{
E T11, T12, T17, T18;
T11 = Ip[WS(rs, 15)];
T12 = Im[WS(rs, 15)];
T13 = T11 - T12;
T4j = T11 + T12;
T17 = Rp[WS(rs, 15)];
T18 = Rm[WS(rs, 15)];
T19 = T17 + T18;
T4f = T17 - T18;
}
T1a = FNMS(T16, T19, T10 * T13);
T5h = FNMS(T4i, T4f, T4e * T4j);
T4k = FMA(T4e, T4f, T4i * T4j);
T4Z = FMA(T10, T19, T16 * T13);
}
{
E T1L, T4x, T1P, T4v;
{
E T1J, T1K, T1N, T1O;
T1J = Ip[WS(rs, 11)];
T1K = Im[WS(rs, 11)];
T1L = T1J - T1K;
T4x = T1J + T1K;
T1N = Rp[WS(rs, 11)];
T1O = Rm[WS(rs, 11)];
T1P = T1N + T1O;
T4v = T1N - T1O;
}
T1Q = FNMS(T1M, T1P, T1I * T1L);
T5l = FNMS(T4w, T4v, T4u * T4x);
T4y = FMA(T4u, T4v, T4w * T4x);
T53 = FMA(T1I, T1P, T1M * T1L);
}
{
E T1m, T4o, T1q, T4m;
{
E T1k, T1l, T1o, T1p;
T1k = Ip[WS(rs, 7)];
T1l = Im[WS(rs, 7)];
T1m = T1k - T1l;
T4o = T1k + T1l;
T1o = Rp[WS(rs, 7)];
T1p = Rm[WS(rs, 7)];
T1q = T1o + T1p;
T4m = T1o - T1p;
}
T1r = FNMS(T1n, T1q, T1j * T1m);
T5i = FNMS(T4n, T4m, T4l * T4o);
T4p = FMA(T4l, T4m, T4n * T4o);
T50 = FMA(T1j, T1q, T1n * T1m);
}
{
E T1y, T4s, T1E, T4r;
{
E T1w, T1x, T1C, T1D;
T1w = Ip[WS(rs, 3)];
T1x = Im[WS(rs, 3)];
T1y = T1w - T1x;
T4s = T1w + T1x;
T1C = Rp[WS(rs, 3)];
T1D = Rm[WS(rs, 3)];
T1E = T1C + T1D;
T4r = T1C - T1D;
}
T1F = FNMS(T1B, T1E, T1v * T1y);
T5k = FNMS(T26, T4r, T23 * T4s);
T4t = FMA(T23, T4r, T26 * T4s);
T52 = FMA(T1v, T1E, T1B * T1y);
}
T1s = T1a + T1r;
T1R = T1F + T1Q;
T65 = T1s - T1R;
T51 = T4Z + T50;
T54 = T52 + T53;
T64 = T51 - T54;
{
E T4q, T4z, T7E, T7F;
T4q = T4k + T4p;
T4z = T4t + T4y;
T4A = T4q + T4z;
T6g = T4z - T4q;
T7E = T5h - T5i;
T7F = T4y - T4t;
T7G = T7E + T7F;
T8U = T7E - T7F;
}
{
E T5j, T5m, T79, T7a;
T5j = T5h + T5i;
T5m = T5k + T5l;
T5n = T5j + T5m;
T6d = T5j - T5m;
T79 = T4Z - T50;
T7a = T1F - T1Q;
T7b = T79 + T7a;
T8J = T79 - T7a;
}
{
E T7x, T7y, T76, T77;
T7x = T4p - T4k;
T7y = T5k - T5l;
T7z = T7x - T7y;
T8R = T7x + T7y;
T76 = T1a - T1r;
T77 = T52 - T53;
T78 = T76 - T77;
T8I = T76 + T77;
}
}
{
E T1T, T5S, T5M, T5W, T5P, T5X, T3a, T5I, T4C, T58, T56, T5H, T5E, T5G, T4R;
E T5R;
{
E TX, T1S, T5K, T5L;
TX = Tv + TW;
T1S = T1s + T1R;
T1T = TX + T1S;
T5S = TX - T1S;
T5K = T5n - T5g;
T5L = T4b - T4A;
T5M = T5K + T5L;
T5W = T5K - T5L;
}
{
E T5N, T5O, T2A, T39;
T5N = T3T + T3A;
T5O = T5C - T5v;
T5P = T5N - T5O;
T5X = T5N + T5O;
T2A = T2g + T2z;
T39 = T2T + T38;
T3a = T2A + T39;
T5I = T39 - T2A;
}
{
E T3U, T4B, T4Y, T55;
T3U = T3A - T3T;
T4B = T4b + T4A;
T4C = T3U - T4B;
T58 = T4B + T3U;
T4Y = T4U + T4X;
T55 = T51 + T54;
T56 = T4Y + T55;
T5H = T55 - T4Y;
}
{
E T5o, T5D, T4J, T4Q;
T5o = T5g + T5n;
T5D = T5v + T5C;
T5E = T5o - T5D;
T5G = T5o + T5D;
T4J = T4F + T4I;
T4Q = T4M + T4P;
T4R = T4J + T4Q;
T5R = T4J - T4Q;
}
{
E T3b, T5F, T57, T59;
T3b = T1T + T3a;
Ip[0] = KP500000000 * (T3b + T4C);
Im[WS(rs, 15)] = KP500000000 * (T4C - T3b);
T5F = T4R + T56;
Rm[WS(rs, 15)] = KP500000000 * (T5F - T5G);
Rp[0] = KP500000000 * (T5F + T5G);
T57 = T4R - T56;
Rm[WS(rs, 7)] = KP500000000 * (T57 - T58);
Rp[WS(rs, 8)] = KP500000000 * (T57 + T58);
T59 = T3a - T1T;
Ip[WS(rs, 8)] = KP500000000 * (T59 + T5E);
Im[WS(rs, 7)] = KP500000000 * (T5E - T59);
}
{
E T5J, T5Q, T5Z, T60;
T5J = KP500000000 * (T5H + T5I);
T5Q = KP353553390 * (T5M + T5P);
Ip[WS(rs, 4)] = T5J + T5Q;
Im[WS(rs, 11)] = T5Q - T5J;
T5Z = KP500000000 * (T5R + T5S);
T60 = KP353553390 * (T5W + T5X);
Rm[WS(rs, 11)] = T5Z - T60;
Rp[WS(rs, 4)] = T5Z + T60;
}
{
E T5T, T5U, T5V, T5Y;
T5T = KP500000000 * (T5R - T5S);
T5U = KP353553390 * (T5P - T5M);
Rm[WS(rs, 3)] = T5T - T5U;
Rp[WS(rs, 12)] = T5T + T5U;
T5V = KP500000000 * (T5I - T5H);
T5Y = KP353553390 * (T5W - T5X);
Ip[WS(rs, 12)] = T5V + T5Y;
Im[WS(rs, 3)] = T5Y - T5V;
}
}
{
E T67, T6Q, T6K, T6U, T6N, T6V, T6a, T6G, T6i, T6A, T6t, T6P, T6w, T6F, T6p;
E T6B;
{
E T63, T66, T6I, T6J;
T63 = T61 - T62;
T66 = T64 + T65;
T67 = KP353553390 * (T63 + T66);
T6Q = KP353553390 * (T63 - T66);
T6I = T6d - T6c;
T6J = T6g - T6f;
T6K = FMA(KP461939766, T6I, KP191341716 * T6J);
T6U = FNMS(KP461939766, T6J, KP191341716 * T6I);
}
{
E T6L, T6M, T68, T69;
T6L = T6k - T6j;
T6M = T6n - T6m;
T6N = FNMS(KP461939766, T6M, KP191341716 * T6L);
T6V = FMA(KP461939766, T6L, KP191341716 * T6M);
T68 = T4P - T4M;
T69 = T38 - T2T;
T6a = KP500000000 * (T68 + T69);
T6G = KP500000000 * (T69 - T68);
}
{
E T6e, T6h, T6r, T6s;
T6e = T6c + T6d;
T6h = T6f + T6g;
T6i = FMA(KP191341716, T6e, KP461939766 * T6h);
T6A = FNMS(KP191341716, T6h, KP461939766 * T6e);
T6r = T4F - T4I;
T6s = T2g - T2z;
T6t = KP500000000 * (T6r + T6s);
T6P = KP500000000 * (T6r - T6s);
}
{
E T6u, T6v, T6l, T6o;
T6u = T62 + T61;
T6v = T64 - T65;
T6w = KP353553390 * (T6u + T6v);
T6F = KP353553390 * (T6v - T6u);
T6l = T6j + T6k;
T6o = T6m + T6n;
T6p = FNMS(KP191341716, T6o, KP461939766 * T6l);
T6B = FMA(KP191341716, T6l, KP461939766 * T6o);
}
{
E T6b, T6q, T6D, T6E;
T6b = T67 + T6a;
T6q = T6i + T6p;
Ip[WS(rs, 2)] = T6b + T6q;
Im[WS(rs, 13)] = T6q - T6b;
T6D = T6t + T6w;
T6E = T6A + T6B;
Rm[WS(rs, 13)] = T6D - T6E;
Rp[WS(rs, 2)] = T6D + T6E;
}
{
E T6x, T6y, T6z, T6C;
T6x = T6t - T6w;
T6y = T6p - T6i;
Rm[WS(rs, 5)] = T6x - T6y;
Rp[WS(rs, 10)] = T6x + T6y;
T6z = T6a - T67;
T6C = T6A - T6B;
Ip[WS(rs, 10)] = T6z + T6C;
Im[WS(rs, 5)] = T6C - T6z;
}
{
E T6H, T6O, T6X, T6Y;
T6H = T6F + T6G;
T6O = T6K + T6N;
Ip[WS(rs, 6)] = T6H + T6O;
Im[WS(rs, 9)] = T6O - T6H;
T6X = T6P + T6Q;
T6Y = T6U + T6V;
Rm[WS(rs, 9)] = T6X - T6Y;
Rp[WS(rs, 6)] = T6X + T6Y;
}
{
E T6R, T6S, T6T, T6W;
T6R = T6P - T6Q;
T6S = T6N - T6K;
Rm[WS(rs, 1)] = T6R - T6S;
Rp[WS(rs, 14)] = T6R + T6S;
T6T = T6G - T6F;
T6W = T6U - T6V;
Ip[WS(rs, 14)] = T6T + T6W;
Im[WS(rs, 1)] = T6W - T6T;
}
}
{
E T7d, T8w, T7o, T8m, T8c, T8l, T89, T8v, T81, T8B, T8h, T8t, T7I, T8A, T8g;
E T8q;
{
E T75, T7c, T85, T88;
T75 = FNMS(KP191341716, T74, KP461939766 * T71);
T7c = FMA(KP461939766, T78, KP191341716 * T7b);
T7d = T75 + T7c;
T8w = T75 - T7c;
{
E T7k, T7n, T8a, T8b;
T7k = KP353553390 * (T7g + T7j);
T7n = KP500000000 * (T7l - T7m);
T7o = T7k + T7n;
T8m = T7n - T7k;
T8a = FMA(KP191341716, T71, KP461939766 * T74);
T8b = FNMS(KP191341716, T78, KP461939766 * T7b);
T8c = T8a + T8b;
T8l = T8b - T8a;
}
T85 = KP500000000 * (T83 + T84);
T88 = KP353553390 * (T86 + T87);
T89 = T85 + T88;
T8v = T85 - T88;
{
E T7T, T8r, T80, T8s, T7P, T7W;
T7P = KP707106781 * (T7L + T7O);
T7T = T7P + T7S;
T8r = T7S - T7P;
T7W = KP707106781 * (T7U + T7V);
T80 = T7W + T7Z;
T8s = T7Z - T7W;
T81 = FNMS(KP097545161, T80, KP490392640 * T7T);
T8B = FMA(KP415734806, T8r, KP277785116 * T8s);
T8h = FMA(KP097545161, T7T, KP490392640 * T80);
T8t = FNMS(KP415734806, T8s, KP277785116 * T8r);
}
{
E T7A, T8o, T7H, T8p, T7w, T7D;
T7w = KP707106781 * (T7s + T7v);
T7A = T7w + T7z;
T8o = T7z - T7w;
T7D = KP707106781 * (T7B + T7C);
T7H = T7D + T7G;
T8p = T7G - T7D;
T7I = FMA(KP490392640, T7A, KP097545161 * T7H);
T8A = FNMS(KP415734806, T8o, KP277785116 * T8p);
T8g = FNMS(KP097545161, T7A, KP490392640 * T7H);
T8q = FMA(KP277785116, T8o, KP415734806 * T8p);
}
}
{
E T7p, T82, T8j, T8k;
T7p = T7d + T7o;
T82 = T7I + T81;
Ip[WS(rs, 1)] = T7p + T82;
Im[WS(rs, 14)] = T82 - T7p;
T8j = T89 + T8c;
T8k = T8g + T8h;
Rm[WS(rs, 14)] = T8j - T8k;
Rp[WS(rs, 1)] = T8j + T8k;
}
{
E T8d, T8e, T8f, T8i;
T8d = T89 - T8c;
T8e = T81 - T7I;
Rm[WS(rs, 6)] = T8d - T8e;
Rp[WS(rs, 9)] = T8d + T8e;
T8f = T7o - T7d;
T8i = T8g - T8h;
Ip[WS(rs, 9)] = T8f + T8i;
Im[WS(rs, 6)] = T8i - T8f;
}
{
E T8n, T8u, T8D, T8E;
T8n = T8l + T8m;
T8u = T8q + T8t;
Ip[WS(rs, 5)] = T8n + T8u;
Im[WS(rs, 10)] = T8u - T8n;
T8D = T8v + T8w;
T8E = T8A + T8B;
Rm[WS(rs, 10)] = T8D - T8E;
Rp[WS(rs, 5)] = T8D + T8E;
}
{
E T8x, T8y, T8z, T8C;
T8x = T8v - T8w;
T8y = T8t - T8q;
Rm[WS(rs, 2)] = T8x - T8y;
Rp[WS(rs, 13)] = T8x + T8y;
T8z = T8m - T8l;
T8C = T8A - T8B;
Ip[WS(rs, 13)] = T8z + T8C;
Im[WS(rs, 2)] = T8C - T8z;
}
}
{
E T8L, T9u, T8O, T9k, T9a, T9j, T97, T9t, T93, T9z, T9f, T9r, T8W, T9y, T9e;
E T9o;
{
E T8H, T8K, T95, T96;
T8H = FNMS(KP461939766, T8G, KP191341716 * T8F);
T8K = FMA(KP191341716, T8I, KP461939766 * T8J);
T8L = T8H + T8K;
T9u = T8H - T8K;
{
E T8M, T8N, T98, T99;
T8M = KP353553390 * (T87 - T86);
T8N = KP500000000 * (T7m + T7l);
T8O = T8M + T8N;
T9k = T8N - T8M;
T98 = FMA(KP461939766, T8F, KP191341716 * T8G);
T99 = FNMS(KP461939766, T8I, KP191341716 * T8J);
T9a = T98 + T99;
T9j = T99 - T98;
}
T95 = KP500000000 * (T83 - T84);
T96 = KP353553390 * (T7g - T7j);
T97 = T95 + T96;
T9t = T95 - T96;
{
E T8Z, T9p, T92, T9q, T8X, T90;
T8X = KP707106781 * (T7V - T7U);
T8Z = T8X + T8Y;
T9p = T8Y - T8X;
T90 = KP707106781 * (T7L - T7O);
T92 = T90 + T91;
T9q = T91 - T90;
T93 = FNMS(KP277785116, T92, KP415734806 * T8Z);
T9z = FMA(KP490392640, T9p, KP097545161 * T9q);
T9f = FMA(KP277785116, T8Z, KP415734806 * T92);
T9r = FNMS(KP490392640, T9q, KP097545161 * T9p);
}
{
E T8S, T9m, T8V, T9n, T8Q, T8T;
T8Q = KP707106781 * (T7C - T7B);
T8S = T8Q + T8R;
T9m = T8R - T8Q;
T8T = KP707106781 * (T7s - T7v);
T8V = T8T + T8U;
T9n = T8U - T8T;
T8W = FMA(KP415734806, T8S, KP277785116 * T8V);
T9y = FNMS(KP490392640, T9m, KP097545161 * T9n);
T9e = FNMS(KP277785116, T8S, KP415734806 * T8V);
T9o = FMA(KP097545161, T9m, KP490392640 * T9n);
}
}
{
E T8P, T94, T9h, T9i;
T8P = T8L + T8O;
T94 = T8W + T93;
Ip[WS(rs, 3)] = T8P + T94;
Im[WS(rs, 12)] = T94 - T8P;
T9h = T97 + T9a;
T9i = T9e + T9f;
Rm[WS(rs, 12)] = T9h - T9i;
Rp[WS(rs, 3)] = T9h + T9i;
}
{
E T9b, T9c, T9d, T9g;
T9b = T97 - T9a;
T9c = T93 - T8W;
Rm[WS(rs, 4)] = T9b - T9c;
Rp[WS(rs, 11)] = T9b + T9c;
T9d = T8O - T8L;
T9g = T9e - T9f;
Ip[WS(rs, 11)] = T9d + T9g;
Im[WS(rs, 4)] = T9g - T9d;
}
{
E T9l, T9s, T9B, T9C;
T9l = T9j + T9k;
T9s = T9o + T9r;
Ip[WS(rs, 7)] = T9l + T9s;
Im[WS(rs, 8)] = T9s - T9l;
T9B = T9t + T9u;
T9C = T9y + T9z;
Rm[WS(rs, 8)] = T9B - T9C;
Rp[WS(rs, 7)] = T9B + T9C;
}
{
E T9v, T9w, T9x, T9A;
T9v = T9t - T9u;
T9w = T9r - T9o;
Rm[0] = T9v - T9w;
Rp[WS(rs, 15)] = T9v + T9w;
T9x = T9k - T9j;
T9A = T9y - T9z;
Ip[WS(rs, 15)] = T9x + T9A;
Im[0] = T9A - T9x;
}
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_CEXP, 1, 1 },
{ TW_CEXP, 1, 3 },
{ TW_CEXP, 1, 9 },
{ TW_CEXP, 1, 27 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 32, "hc2cfdft2_32", twinstr, &GENUS, { 440, 188, 112, 0 } };
void X(codelet_hc2cfdft2_32) (planner *p) {
X(khc2c_register) (p, hc2cfdft2_32, &desc, HC2C_VIA_DFT);
}
#endif