mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-05 12:25:05 +00:00
54e93db207
not reliable yet
937 lines
26 KiB
C
937 lines
26 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/* This file was automatically generated --- DO NOT EDIT */
|
|
/* Generated on Tue Sep 14 10:46:38 EDT 2021 */
|
|
|
|
#include "rdft/codelet-rdft.h"
|
|
|
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
|
|
|
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -dit -name hc2cfdft2_16 -include rdft/scalar/hc2cf.h */
|
|
|
|
/*
|
|
* This function contains 228 FP additions, 166 FP multiplications,
|
|
* (or, 136 additions, 74 multiplications, 92 fused multiply/add),
|
|
* 91 stack variables, 4 constants, and 64 memory accesses
|
|
*/
|
|
#include "rdft/scalar/hc2cf.h"
|
|
|
|
static void hc2cfdft2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
|
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
|
|
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
|
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
|
{
|
|
INT m;
|
|
for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) {
|
|
E T1, T2, Tw, Ty, Th, Tj, T4, T5, TY, T6, Tk, T1o, T1d, Tz, T1j;
|
|
E Tq, TF, T18, TR, TL, T13, T1A, T1K, T1E, T1H, Tc, T25, T2k, T29, T2h;
|
|
{
|
|
E Tx, TE, Ti, TK, Tp, TQ, Tb, T3;
|
|
T1 = W[0];
|
|
T2 = W[2];
|
|
T3 = T1 * T2;
|
|
Tw = W[6];
|
|
Tx = T1 * Tw;
|
|
Ty = W[7];
|
|
TE = T1 * Ty;
|
|
Th = W[4];
|
|
Ti = T1 * Th;
|
|
TK = T2 * Th;
|
|
Tj = W[5];
|
|
Tp = T1 * Tj;
|
|
TQ = T2 * Tj;
|
|
T4 = W[1];
|
|
T5 = W[3];
|
|
Tb = T1 * T5;
|
|
TY = FNMS(T4, T5, T3);
|
|
T6 = FMA(T4, T5, T3);
|
|
Tk = FNMS(T4, Tj, Ti);
|
|
T1o = FNMS(T4, Th, Tp);
|
|
T1d = FMA(T5, Th, TQ);
|
|
Tz = FMA(T4, Ty, Tx);
|
|
T1j = FMA(T4, Tj, Ti);
|
|
Tq = FMA(T4, Th, Tp);
|
|
TF = FNMS(T4, Tw, TE);
|
|
T18 = FNMS(T5, Tj, TK);
|
|
TR = FNMS(T5, Th, TQ);
|
|
TL = FMA(T5, Tj, TK);
|
|
{
|
|
E T1z, T1D, T24, T28;
|
|
T1z = TY * Th;
|
|
T1D = TY * Tj;
|
|
T13 = FMA(T4, T2, Tb);
|
|
T1A = FMA(T13, Tj, T1z);
|
|
T1K = FMA(T13, Th, T1D);
|
|
T1E = FNMS(T13, Th, T1D);
|
|
T1H = FNMS(T13, Tj, T1z);
|
|
T24 = T6 * Th;
|
|
T28 = T6 * Tj;
|
|
Tc = FNMS(T4, T2, Tb);
|
|
T25 = FNMS(Tc, Tj, T24);
|
|
T2k = FNMS(Tc, Th, T28);
|
|
T29 = FMA(Tc, Th, T28);
|
|
T2h = FMA(Tc, Tj, T24);
|
|
}
|
|
}
|
|
{
|
|
E T1v, T2q, T1s, T2s, T38, T3T, T1Y, T3P, T17, T1h, T2x, T2v, T33, T3Q, T1N;
|
|
E T3S, Tg, Tu, T3A, T2B, T2D, T3B, T2c, T3L, T2S, T3I, TJ, TV, T3E, T2G;
|
|
E T2I, T3D, T2n, T3J, T2X, T3M;
|
|
{
|
|
E T1t, T1u, T1W, T1m, T1Q, T1S, T1T, T1V, T36, T1r, T34, T1P, T1k, T1l, T1n;
|
|
E T2r;
|
|
T1t = Ip[0];
|
|
T1u = Im[0];
|
|
T1W = T1t + T1u;
|
|
T1k = Ip[WS(rs, 4)];
|
|
T1l = Im[WS(rs, 4)];
|
|
T1m = T1k - T1l;
|
|
T1Q = T1k + T1l;
|
|
{
|
|
E T1U, T1p, T1q, T1O;
|
|
T1S = Rm[0];
|
|
T1T = Rp[0];
|
|
T1U = T1S - T1T;
|
|
T1V = T1 * T1U;
|
|
T36 = T4 * T1U;
|
|
T1p = Rp[WS(rs, 4)];
|
|
T1q = Rm[WS(rs, 4)];
|
|
T1O = T1q - T1p;
|
|
T1r = T1p + T1q;
|
|
T34 = Tj * T1O;
|
|
T1P = Th * T1O;
|
|
}
|
|
T1v = T1t - T1u;
|
|
T2q = T1T + T1S;
|
|
T1n = T1j * T1m;
|
|
T1s = FNMS(T1o, T1r, T1n);
|
|
T2r = T1j * T1r;
|
|
T2s = FMA(T1o, T1m, T2r);
|
|
{
|
|
E T35, T37, T1R, T1X;
|
|
T35 = FMA(Th, T1Q, T34);
|
|
T37 = FMA(T1, T1W, T36);
|
|
T38 = T35 + T37;
|
|
T3T = T37 - T35;
|
|
T1R = FNMS(Tj, T1Q, T1P);
|
|
T1X = FNMS(T4, T1W, T1V);
|
|
T1Y = T1R + T1X;
|
|
T3P = T1X - T1R;
|
|
}
|
|
}
|
|
{
|
|
E T11, T1F, T16, T2Z, T1C, T1b, T1L, T1g, T31, T1J;
|
|
{
|
|
E TZ, T10, T14, T15, T1B;
|
|
TZ = Ip[WS(rs, 2)];
|
|
T10 = Im[WS(rs, 2)];
|
|
T11 = TZ - T10;
|
|
T1F = TZ + T10;
|
|
T14 = Rp[WS(rs, 2)];
|
|
T15 = Rm[WS(rs, 2)];
|
|
T1B = T15 - T14;
|
|
T16 = T14 + T15;
|
|
T2Z = T1E * T1B;
|
|
T1C = T1A * T1B;
|
|
}
|
|
{
|
|
E T19, T1a, T1e, T1f, T1I;
|
|
T19 = Ip[WS(rs, 6)];
|
|
T1a = Im[WS(rs, 6)];
|
|
T1b = T19 - T1a;
|
|
T1L = T19 + T1a;
|
|
T1e = Rp[WS(rs, 6)];
|
|
T1f = Rm[WS(rs, 6)];
|
|
T1I = T1f - T1e;
|
|
T1g = T1e + T1f;
|
|
T31 = T1K * T1I;
|
|
T1J = T1H * T1I;
|
|
}
|
|
{
|
|
E T12, T1c, T2w, T2u;
|
|
T12 = TY * T11;
|
|
T17 = FNMS(T13, T16, T12);
|
|
T1c = T18 * T1b;
|
|
T1h = FNMS(T1d, T1g, T1c);
|
|
T2w = T18 * T1g;
|
|
T2x = FMA(T1d, T1b, T2w);
|
|
T2u = TY * T16;
|
|
T2v = FMA(T13, T11, T2u);
|
|
{
|
|
E T30, T32, T1G, T1M;
|
|
T30 = FMA(T1A, T1F, T2Z);
|
|
T32 = FMA(T1H, T1L, T31);
|
|
T33 = T30 + T32;
|
|
T3Q = T30 - T32;
|
|
T1G = FNMS(T1E, T1F, T1C);
|
|
T1M = FNMS(T1K, T1L, T1J);
|
|
T1N = T1G + T1M;
|
|
T3S = T1G - T1M;
|
|
}
|
|
}
|
|
}
|
|
{
|
|
E T9, T22, Ta, T2O, Tf, T20, T21, T2A, Tn, T2a, To, T2Q, Tt, T26, T27;
|
|
E T2C;
|
|
{
|
|
E T7, T8, Td, Te;
|
|
T7 = Ip[WS(rs, 1)];
|
|
T8 = Im[WS(rs, 1)];
|
|
T9 = T7 - T8;
|
|
T22 = T7 + T8;
|
|
Ta = T6 * T9;
|
|
T2O = T2 * T22;
|
|
Td = Rp[WS(rs, 1)];
|
|
Te = Rm[WS(rs, 1)];
|
|
Tf = Td + Te;
|
|
T20 = Td - Te;
|
|
T21 = T2 * T20;
|
|
T2A = T6 * Tf;
|
|
}
|
|
{
|
|
E Tl, Tm, Tr, Ts;
|
|
Tl = Ip[WS(rs, 5)];
|
|
Tm = Im[WS(rs, 5)];
|
|
Tn = Tl - Tm;
|
|
T2a = Tl + Tm;
|
|
To = Tk * Tn;
|
|
T2Q = T25 * T2a;
|
|
Tr = Rp[WS(rs, 5)];
|
|
Ts = Rm[WS(rs, 5)];
|
|
Tt = Tr + Ts;
|
|
T26 = Tr - Ts;
|
|
T27 = T25 * T26;
|
|
T2C = Tk * Tt;
|
|
}
|
|
Tg = FNMS(Tc, Tf, Ta);
|
|
Tu = FNMS(Tq, Tt, To);
|
|
T3A = Tg - Tu;
|
|
T2B = FMA(Tc, T9, T2A);
|
|
T2D = FMA(Tq, Tn, T2C);
|
|
T3B = T2B - T2D;
|
|
{
|
|
E T23, T2b, T2P, T2R;
|
|
T23 = FMA(T5, T22, T21);
|
|
T2b = FMA(T29, T2a, T27);
|
|
T2c = T23 + T2b;
|
|
T3L = T2b - T23;
|
|
T2P = FNMS(T5, T20, T2O);
|
|
T2R = FNMS(T29, T26, T2Q);
|
|
T2S = T2P + T2R;
|
|
T3I = T2R - T2P;
|
|
}
|
|
}
|
|
{
|
|
E TC, T2f, TD, T2T, TI, T2d, T2e, T2F, TO, T2l, TP, T2V, TU, T2i, T2j;
|
|
E T2H;
|
|
{
|
|
E TA, TB, TG, TH;
|
|
TA = Ip[WS(rs, 7)];
|
|
TB = Im[WS(rs, 7)];
|
|
TC = TA - TB;
|
|
T2f = TA + TB;
|
|
TD = Tz * TC;
|
|
T2T = Tw * T2f;
|
|
TG = Rp[WS(rs, 7)];
|
|
TH = Rm[WS(rs, 7)];
|
|
TI = TG + TH;
|
|
T2d = TG - TH;
|
|
T2e = Tw * T2d;
|
|
T2F = Tz * TI;
|
|
}
|
|
{
|
|
E TM, TN, TS, TT;
|
|
TM = Ip[WS(rs, 3)];
|
|
TN = Im[WS(rs, 3)];
|
|
TO = TM - TN;
|
|
T2l = TM + TN;
|
|
TP = TL * TO;
|
|
T2V = T2h * T2l;
|
|
TS = Rp[WS(rs, 3)];
|
|
TT = Rm[WS(rs, 3)];
|
|
TU = TS + TT;
|
|
T2i = TS - TT;
|
|
T2j = T2h * T2i;
|
|
T2H = TL * TU;
|
|
}
|
|
TJ = FNMS(TF, TI, TD);
|
|
TV = FNMS(TR, TU, TP);
|
|
T3E = TJ - TV;
|
|
T2G = FMA(TF, TC, T2F);
|
|
T2I = FMA(TR, TO, T2H);
|
|
T3D = T2G - T2I;
|
|
{
|
|
E T2g, T2m, T2U, T2W;
|
|
T2g = FMA(Ty, T2f, T2e);
|
|
T2m = FMA(T2k, T2l, T2j);
|
|
T2n = T2g + T2m;
|
|
T3J = T2m - T2g;
|
|
T2U = FNMS(Ty, T2d, T2T);
|
|
T2W = FNMS(T2k, T2i, T2V);
|
|
T2X = T2U + T2W;
|
|
T3M = T2U - T2W;
|
|
}
|
|
}
|
|
{
|
|
E TX, T3o, T3i, T3s, T3l, T3t, T1x, T3e, T2p, T2M, T2K, T3d, T3a, T3c, T2z;
|
|
E T3n;
|
|
{
|
|
E Tv, TW, T3g, T3h;
|
|
Tv = Tg + Tu;
|
|
TW = TJ + TV;
|
|
TX = Tv + TW;
|
|
T3o = Tv - TW;
|
|
T3g = T2X - T2S;
|
|
T3h = T2c - T2n;
|
|
T3i = T3g + T3h;
|
|
T3s = T3g - T3h;
|
|
}
|
|
{
|
|
E T3j, T3k, T1i, T1w;
|
|
T3j = T1Y - T1N;
|
|
T3k = T38 - T33;
|
|
T3l = T3j - T3k;
|
|
T3t = T3j + T3k;
|
|
T1i = T17 + T1h;
|
|
T1w = T1s + T1v;
|
|
T1x = T1i + T1w;
|
|
T3e = T1w - T1i;
|
|
}
|
|
{
|
|
E T1Z, T2o, T2E, T2J;
|
|
T1Z = T1N + T1Y;
|
|
T2o = T2c + T2n;
|
|
T2p = T1Z - T2o;
|
|
T2M = T2o + T1Z;
|
|
T2E = T2B + T2D;
|
|
T2J = T2G + T2I;
|
|
T2K = T2E + T2J;
|
|
T3d = T2J - T2E;
|
|
}
|
|
{
|
|
E T2Y, T39, T2t, T2y;
|
|
T2Y = T2S + T2X;
|
|
T39 = T33 + T38;
|
|
T3a = T2Y - T39;
|
|
T3c = T2Y + T39;
|
|
T2t = T2q + T2s;
|
|
T2y = T2v + T2x;
|
|
T2z = T2t + T2y;
|
|
T3n = T2t - T2y;
|
|
}
|
|
{
|
|
E T1y, T3b, T2L, T2N;
|
|
T1y = TX + T1x;
|
|
Ip[0] = KP500000000 * (T1y + T2p);
|
|
Im[WS(rs, 7)] = KP500000000 * (T2p - T1y);
|
|
T3b = T2z + T2K;
|
|
Rm[WS(rs, 7)] = KP500000000 * (T3b - T3c);
|
|
Rp[0] = KP500000000 * (T3b + T3c);
|
|
T2L = T2z - T2K;
|
|
Rm[WS(rs, 3)] = KP500000000 * (T2L - T2M);
|
|
Rp[WS(rs, 4)] = KP500000000 * (T2L + T2M);
|
|
T2N = T1x - TX;
|
|
Ip[WS(rs, 4)] = KP500000000 * (T2N + T3a);
|
|
Im[WS(rs, 3)] = KP500000000 * (T3a - T2N);
|
|
}
|
|
{
|
|
E T3f, T3m, T3v, T3w;
|
|
T3f = T3d + T3e;
|
|
T3m = T3i + T3l;
|
|
Ip[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3m, T3f));
|
|
Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP707106781, T3m, T3f)));
|
|
T3v = T3n + T3o;
|
|
T3w = T3s + T3t;
|
|
Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP707106781, T3w, T3v));
|
|
Rp[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3w, T3v));
|
|
}
|
|
{
|
|
E T3p, T3q, T3r, T3u;
|
|
T3p = T3n - T3o;
|
|
T3q = T3l - T3i;
|
|
Rm[WS(rs, 1)] = KP500000000 * (FNMS(KP707106781, T3q, T3p));
|
|
Rp[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3q, T3p));
|
|
T3r = T3e - T3d;
|
|
T3u = T3s - T3t;
|
|
Ip[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3u, T3r));
|
|
Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP707106781, T3u, T3r)));
|
|
}
|
|
}
|
|
{
|
|
E T3z, T4b, T4g, T4q, T4j, T4r, T3G, T4m, T3O, T46, T3Z, T4l, T42, T4c, T3V;
|
|
E T47;
|
|
{
|
|
E T3x, T3y, T4e, T4f;
|
|
T3x = T1v - T1s;
|
|
T3y = T2v - T2x;
|
|
T3z = T3x - T3y;
|
|
T4b = T3y + T3x;
|
|
T4e = T3I - T3J;
|
|
T4f = T3M - T3L;
|
|
T4g = FMA(KP414213562, T4f, T4e);
|
|
T4q = FNMS(KP414213562, T4e, T4f);
|
|
}
|
|
{
|
|
E T4h, T4i, T3C, T3F;
|
|
T4h = T3Q + T3P;
|
|
T4i = T3T - T3S;
|
|
T4j = FMA(KP414213562, T4i, T4h);
|
|
T4r = FNMS(KP414213562, T4h, T4i);
|
|
T3C = T3A - T3B;
|
|
T3F = T3D + T3E;
|
|
T3G = T3C + T3F;
|
|
T4m = T3C - T3F;
|
|
}
|
|
{
|
|
E T3K, T3N, T3X, T3Y;
|
|
T3K = T3I + T3J;
|
|
T3N = T3L + T3M;
|
|
T3O = FMA(KP414213562, T3N, T3K);
|
|
T46 = FNMS(KP414213562, T3K, T3N);
|
|
T3X = T2q - T2s;
|
|
T3Y = T17 - T1h;
|
|
T3Z = T3X + T3Y;
|
|
T4l = T3X - T3Y;
|
|
}
|
|
{
|
|
E T40, T41, T3R, T3U;
|
|
T40 = T3B + T3A;
|
|
T41 = T3D - T3E;
|
|
T42 = T40 + T41;
|
|
T4c = T41 - T40;
|
|
T3R = T3P - T3Q;
|
|
T3U = T3S + T3T;
|
|
T3V = FNMS(KP414213562, T3U, T3R);
|
|
T47 = FMA(KP414213562, T3R, T3U);
|
|
}
|
|
{
|
|
E T3H, T3W, T49, T4a;
|
|
T3H = FMA(KP707106781, T3G, T3z);
|
|
T3W = T3O + T3V;
|
|
Ip[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T3W, T3H));
|
|
Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP923879532, T3W, T3H)));
|
|
T49 = FMA(KP707106781, T42, T3Z);
|
|
T4a = T46 + T47;
|
|
Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP923879532, T4a, T49));
|
|
Rp[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T4a, T49));
|
|
}
|
|
{
|
|
E T43, T44, T45, T48;
|
|
T43 = FNMS(KP707106781, T42, T3Z);
|
|
T44 = T3V - T3O;
|
|
Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP923879532, T44, T43));
|
|
Rp[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T44, T43));
|
|
T45 = FNMS(KP707106781, T3G, T3z);
|
|
T48 = T46 - T47;
|
|
Ip[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T48, T45));
|
|
Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP923879532, T48, T45)));
|
|
}
|
|
{
|
|
E T4d, T4k, T4t, T4u;
|
|
T4d = FNMS(KP707106781, T4c, T4b);
|
|
T4k = T4g - T4j;
|
|
Ip[WS(rs, 7)] = KP500000000 * (FMA(KP923879532, T4k, T4d));
|
|
Im[0] = -(KP500000000 * (FNMS(KP923879532, T4k, T4d)));
|
|
T4t = FNMS(KP707106781, T4m, T4l);
|
|
T4u = T4q + T4r;
|
|
Rp[WS(rs, 7)] = KP500000000 * (FNMS(KP923879532, T4u, T4t));
|
|
Rm[0] = KP500000000 * (FMA(KP923879532, T4u, T4t));
|
|
}
|
|
{
|
|
E T4n, T4o, T4p, T4s;
|
|
T4n = FMA(KP707106781, T4m, T4l);
|
|
T4o = T4g + T4j;
|
|
Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP923879532, T4o, T4n));
|
|
Rp[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4o, T4n));
|
|
T4p = FMA(KP707106781, T4c, T4b);
|
|
T4s = T4q - T4r;
|
|
Ip[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4s, T4p));
|
|
Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP923879532, T4s, T4p)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
{ TW_CEXP, 1, 1 },
|
|
{ TW_CEXP, 1, 3 },
|
|
{ TW_CEXP, 1, 9 },
|
|
{ TW_CEXP, 1, 15 },
|
|
{ TW_NEXT, 1, 0 }
|
|
};
|
|
|
|
static const hc2c_desc desc = { 16, "hc2cfdft2_16", twinstr, &GENUS, { 136, 74, 92, 0 } };
|
|
|
|
void X(codelet_hc2cfdft2_16) (planner *p) {
|
|
X(khc2c_register) (p, hc2cfdft2_16, &desc, HC2C_VIA_DFT);
|
|
}
|
|
#else
|
|
|
|
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -dit -name hc2cfdft2_16 -include rdft/scalar/hc2cf.h */
|
|
|
|
/*
|
|
* This function contains 228 FP additions, 124 FP multiplications,
|
|
* (or, 188 additions, 84 multiplications, 40 fused multiply/add),
|
|
* 91 stack variables, 4 constants, and 64 memory accesses
|
|
*/
|
|
#include "rdft/scalar/hc2cf.h"
|
|
|
|
static void hc2cfdft2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DK(KP461939766, +0.461939766255643378064091594698394143411208313);
|
|
DK(KP191341716, +0.191341716182544885864229992015199433380672281);
|
|
DK(KP353553390, +0.353553390593273762200422181052424519642417969);
|
|
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
|
{
|
|
INT m;
|
|
for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) {
|
|
E T1, T4, T2, T5, T7, Td, T12, TY, Tk, Ti, Tm, T1l, T1b, TL, T1h;
|
|
E Ts, TR, T17, Ty, Tz, TA, TE, T1L, T1Q, T1H, T1O, T24, T2d, T20, T2b;
|
|
{
|
|
E Tl, TP, Tq, TK, Tj, TQ, Tr, TJ;
|
|
{
|
|
E T3, Tc, T6, Tb;
|
|
T1 = W[0];
|
|
T4 = W[1];
|
|
T2 = W[2];
|
|
T5 = W[3];
|
|
T3 = T1 * T2;
|
|
Tc = T4 * T2;
|
|
T6 = T4 * T5;
|
|
Tb = T1 * T5;
|
|
T7 = T3 + T6;
|
|
Td = Tb - Tc;
|
|
T12 = Tb + Tc;
|
|
TY = T3 - T6;
|
|
Tk = W[5];
|
|
Tl = T4 * Tk;
|
|
TP = T2 * Tk;
|
|
Tq = T1 * Tk;
|
|
TK = T5 * Tk;
|
|
Ti = W[4];
|
|
Tj = T1 * Ti;
|
|
TQ = T5 * Ti;
|
|
Tr = T4 * Ti;
|
|
TJ = T2 * Ti;
|
|
}
|
|
Tm = Tj - Tl;
|
|
T1l = Tq - Tr;
|
|
T1b = TP + TQ;
|
|
TL = TJ + TK;
|
|
T1h = Tj + Tl;
|
|
Ts = Tq + Tr;
|
|
TR = TP - TQ;
|
|
T17 = TJ - TK;
|
|
Ty = W[6];
|
|
Tz = W[7];
|
|
TA = FMA(T1, Ty, T4 * Tz);
|
|
TE = FNMS(T4, Ty, T1 * Tz);
|
|
{
|
|
E T1J, T1K, T1F, T1G;
|
|
T1J = TY * Tk;
|
|
T1K = T12 * Ti;
|
|
T1L = T1J - T1K;
|
|
T1Q = T1J + T1K;
|
|
T1F = TY * Ti;
|
|
T1G = T12 * Tk;
|
|
T1H = T1F + T1G;
|
|
T1O = T1F - T1G;
|
|
}
|
|
{
|
|
E T22, T23, T1Y, T1Z;
|
|
T22 = T7 * Tk;
|
|
T23 = Td * Ti;
|
|
T24 = T22 + T23;
|
|
T2d = T22 - T23;
|
|
T1Y = T7 * Ti;
|
|
T1Z = Td * Tk;
|
|
T20 = T1Y - T1Z;
|
|
T2b = T1Y + T1Z;
|
|
}
|
|
}
|
|
{
|
|
E T1t, T3i, T2l, T3B, T1E, T3t, T2M, T3x, T1g, T3C, T2J, T3u, T1T, T3w, T2o;
|
|
E T3j, Tx, T3b, T2C, T3q, T27, T3m, T2s, T3c, TW, T3f, T2F, T3n, T2g, T3p;
|
|
E T2v, T3e;
|
|
{
|
|
E T1k, T1C, T1o, T1B, T1s, T1z, T1y, T2j, T1p, T2k;
|
|
{
|
|
E T1i, T1j, T1m, T1n;
|
|
T1i = Ip[WS(rs, 4)];
|
|
T1j = Im[WS(rs, 4)];
|
|
T1k = T1i - T1j;
|
|
T1C = T1i + T1j;
|
|
T1m = Rp[WS(rs, 4)];
|
|
T1n = Rm[WS(rs, 4)];
|
|
T1o = T1m + T1n;
|
|
T1B = T1m - T1n;
|
|
}
|
|
{
|
|
E T1q, T1r, T1w, T1x;
|
|
T1q = Ip[0];
|
|
T1r = Im[0];
|
|
T1s = T1q - T1r;
|
|
T1z = T1q + T1r;
|
|
T1w = Rm[0];
|
|
T1x = Rp[0];
|
|
T1y = T1w - T1x;
|
|
T2j = T1x + T1w;
|
|
}
|
|
T1p = FNMS(T1l, T1o, T1h * T1k);
|
|
T1t = T1p + T1s;
|
|
T3i = T1s - T1p;
|
|
T2k = FMA(T1h, T1o, T1l * T1k);
|
|
T2l = T2j + T2k;
|
|
T3B = T2j - T2k;
|
|
{
|
|
E T1A, T1D, T2K, T2L;
|
|
T1A = FNMS(T4, T1z, T1 * T1y);
|
|
T1D = FMA(Ti, T1B, Tk * T1C);
|
|
T1E = T1A - T1D;
|
|
T3t = T1D + T1A;
|
|
T2K = FNMS(Tk, T1B, Ti * T1C);
|
|
T2L = FMA(T4, T1y, T1 * T1z);
|
|
T2M = T2K + T2L;
|
|
T3x = T2L - T2K;
|
|
}
|
|
}
|
|
{
|
|
E T11, T1M, T15, T1I, T1a, T1R, T1e, T1P;
|
|
{
|
|
E TZ, T10, T13, T14;
|
|
TZ = Ip[WS(rs, 2)];
|
|
T10 = Im[WS(rs, 2)];
|
|
T11 = TZ - T10;
|
|
T1M = TZ + T10;
|
|
T13 = Rp[WS(rs, 2)];
|
|
T14 = Rm[WS(rs, 2)];
|
|
T15 = T13 + T14;
|
|
T1I = T13 - T14;
|
|
}
|
|
{
|
|
E T18, T19, T1c, T1d;
|
|
T18 = Ip[WS(rs, 6)];
|
|
T19 = Im[WS(rs, 6)];
|
|
T1a = T18 - T19;
|
|
T1R = T18 + T19;
|
|
T1c = Rp[WS(rs, 6)];
|
|
T1d = Rm[WS(rs, 6)];
|
|
T1e = T1c + T1d;
|
|
T1P = T1c - T1d;
|
|
}
|
|
{
|
|
E T16, T1f, T2H, T2I;
|
|
T16 = FNMS(T12, T15, TY * T11);
|
|
T1f = FNMS(T1b, T1e, T17 * T1a);
|
|
T1g = T16 + T1f;
|
|
T3C = T16 - T1f;
|
|
T2H = FNMS(T1L, T1I, T1H * T1M);
|
|
T2I = FNMS(T1Q, T1P, T1O * T1R);
|
|
T2J = T2H + T2I;
|
|
T3u = T2H - T2I;
|
|
}
|
|
{
|
|
E T1N, T1S, T2m, T2n;
|
|
T1N = FMA(T1H, T1I, T1L * T1M);
|
|
T1S = FMA(T1O, T1P, T1Q * T1R);
|
|
T1T = T1N + T1S;
|
|
T3w = T1S - T1N;
|
|
T2m = FMA(TY, T15, T12 * T11);
|
|
T2n = FMA(T17, T1e, T1b * T1a);
|
|
T2o = T2m + T2n;
|
|
T3j = T2m - T2n;
|
|
}
|
|
}
|
|
{
|
|
E Ta, T1W, Tg, T1V, Tp, T25, Tv, T21;
|
|
{
|
|
E T8, T9, Te, Tf;
|
|
T8 = Ip[WS(rs, 1)];
|
|
T9 = Im[WS(rs, 1)];
|
|
Ta = T8 - T9;
|
|
T1W = T8 + T9;
|
|
Te = Rp[WS(rs, 1)];
|
|
Tf = Rm[WS(rs, 1)];
|
|
Tg = Te + Tf;
|
|
T1V = Te - Tf;
|
|
}
|
|
{
|
|
E Tn, To, Tt, Tu;
|
|
Tn = Ip[WS(rs, 5)];
|
|
To = Im[WS(rs, 5)];
|
|
Tp = Tn - To;
|
|
T25 = Tn + To;
|
|
Tt = Rp[WS(rs, 5)];
|
|
Tu = Rm[WS(rs, 5)];
|
|
Tv = Tt + Tu;
|
|
T21 = Tt - Tu;
|
|
}
|
|
{
|
|
E Th, Tw, T2A, T2B;
|
|
Th = FNMS(Td, Tg, T7 * Ta);
|
|
Tw = FNMS(Ts, Tv, Tm * Tp);
|
|
Tx = Th + Tw;
|
|
T3b = Th - Tw;
|
|
T2A = FNMS(T5, T1V, T2 * T1W);
|
|
T2B = FNMS(T24, T21, T20 * T25);
|
|
T2C = T2A + T2B;
|
|
T3q = T2A - T2B;
|
|
}
|
|
{
|
|
E T1X, T26, T2q, T2r;
|
|
T1X = FMA(T2, T1V, T5 * T1W);
|
|
T26 = FMA(T20, T21, T24 * T25);
|
|
T27 = T1X + T26;
|
|
T3m = T26 - T1X;
|
|
T2q = FMA(T7, Tg, Td * Ta);
|
|
T2r = FMA(Tm, Tv, Ts * Tp);
|
|
T2s = T2q + T2r;
|
|
T3c = T2q - T2r;
|
|
}
|
|
}
|
|
{
|
|
E TD, T29, TH, T28, TO, T2e, TU, T2c;
|
|
{
|
|
E TB, TC, TF, TG;
|
|
TB = Ip[WS(rs, 7)];
|
|
TC = Im[WS(rs, 7)];
|
|
TD = TB - TC;
|
|
T29 = TB + TC;
|
|
TF = Rp[WS(rs, 7)];
|
|
TG = Rm[WS(rs, 7)];
|
|
TH = TF + TG;
|
|
T28 = TF - TG;
|
|
}
|
|
{
|
|
E TM, TN, TS, TT;
|
|
TM = Ip[WS(rs, 3)];
|
|
TN = Im[WS(rs, 3)];
|
|
TO = TM - TN;
|
|
T2e = TM + TN;
|
|
TS = Rp[WS(rs, 3)];
|
|
TT = Rm[WS(rs, 3)];
|
|
TU = TS + TT;
|
|
T2c = TS - TT;
|
|
}
|
|
{
|
|
E TI, TV, T2D, T2E;
|
|
TI = FNMS(TE, TH, TA * TD);
|
|
TV = FNMS(TR, TU, TL * TO);
|
|
TW = TI + TV;
|
|
T3f = TI - TV;
|
|
T2D = FNMS(Tz, T28, Ty * T29);
|
|
T2E = FNMS(T2d, T2c, T2b * T2e);
|
|
T2F = T2D + T2E;
|
|
T3n = T2D - T2E;
|
|
}
|
|
{
|
|
E T2a, T2f, T2t, T2u;
|
|
T2a = FMA(Ty, T28, Tz * T29);
|
|
T2f = FMA(T2b, T2c, T2d * T2e);
|
|
T2g = T2a + T2f;
|
|
T3p = T2f - T2a;
|
|
T2t = FMA(TA, TH, TE * TD);
|
|
T2u = FMA(TL, TU, TR * TO);
|
|
T2v = T2t + T2u;
|
|
T3e = T2t - T2u;
|
|
}
|
|
}
|
|
{
|
|
E T1v, T2z, T2O, T2Q, T2i, T2y, T2x, T2P;
|
|
{
|
|
E TX, T1u, T2G, T2N;
|
|
TX = Tx + TW;
|
|
T1u = T1g + T1t;
|
|
T1v = TX + T1u;
|
|
T2z = T1u - TX;
|
|
T2G = T2C + T2F;
|
|
T2N = T2J + T2M;
|
|
T2O = T2G - T2N;
|
|
T2Q = T2G + T2N;
|
|
}
|
|
{
|
|
E T1U, T2h, T2p, T2w;
|
|
T1U = T1E - T1T;
|
|
T2h = T27 + T2g;
|
|
T2i = T1U - T2h;
|
|
T2y = T2h + T1U;
|
|
T2p = T2l + T2o;
|
|
T2w = T2s + T2v;
|
|
T2x = T2p - T2w;
|
|
T2P = T2p + T2w;
|
|
}
|
|
Ip[0] = KP500000000 * (T1v + T2i);
|
|
Rp[0] = KP500000000 * (T2P + T2Q);
|
|
Im[WS(rs, 7)] = KP500000000 * (T2i - T1v);
|
|
Rm[WS(rs, 7)] = KP500000000 * (T2P - T2Q);
|
|
Rm[WS(rs, 3)] = KP500000000 * (T2x - T2y);
|
|
Im[WS(rs, 3)] = KP500000000 * (T2O - T2z);
|
|
Rp[WS(rs, 4)] = KP500000000 * (T2x + T2y);
|
|
Ip[WS(rs, 4)] = KP500000000 * (T2z + T2O);
|
|
}
|
|
{
|
|
E T2T, T35, T33, T39, T2W, T36, T2Z, T37;
|
|
{
|
|
E T2R, T2S, T31, T32;
|
|
T2R = T2v - T2s;
|
|
T2S = T1t - T1g;
|
|
T2T = KP500000000 * (T2R + T2S);
|
|
T35 = KP500000000 * (T2S - T2R);
|
|
T31 = T2l - T2o;
|
|
T32 = Tx - TW;
|
|
T33 = KP500000000 * (T31 - T32);
|
|
T39 = KP500000000 * (T31 + T32);
|
|
}
|
|
{
|
|
E T2U, T2V, T2X, T2Y;
|
|
T2U = T2F - T2C;
|
|
T2V = T27 - T2g;
|
|
T2W = T2U + T2V;
|
|
T36 = T2U - T2V;
|
|
T2X = T1T + T1E;
|
|
T2Y = T2M - T2J;
|
|
T2Z = T2X - T2Y;
|
|
T37 = T2X + T2Y;
|
|
}
|
|
{
|
|
E T30, T3a, T34, T38;
|
|
T30 = KP353553390 * (T2W + T2Z);
|
|
Ip[WS(rs, 2)] = T2T + T30;
|
|
Im[WS(rs, 5)] = T30 - T2T;
|
|
T3a = KP353553390 * (T36 + T37);
|
|
Rm[WS(rs, 5)] = T39 - T3a;
|
|
Rp[WS(rs, 2)] = T39 + T3a;
|
|
T34 = KP353553390 * (T2Z - T2W);
|
|
Rm[WS(rs, 1)] = T33 - T34;
|
|
Rp[WS(rs, 6)] = T33 + T34;
|
|
T38 = KP353553390 * (T36 - T37);
|
|
Ip[WS(rs, 6)] = T35 + T38;
|
|
Im[WS(rs, 1)] = T38 - T35;
|
|
}
|
|
}
|
|
{
|
|
E T3k, T3Q, T3Z, T3D, T3h, T40, T3X, T45, T3G, T3P, T3s, T3K, T3U, T44, T3z;
|
|
E T3L;
|
|
{
|
|
E T3d, T3g, T3o, T3r;
|
|
T3k = KP500000000 * (T3i - T3j);
|
|
T3Q = KP500000000 * (T3j + T3i);
|
|
T3Z = KP500000000 * (T3B - T3C);
|
|
T3D = KP500000000 * (T3B + T3C);
|
|
T3d = T3b - T3c;
|
|
T3g = T3e + T3f;
|
|
T3h = KP353553390 * (T3d + T3g);
|
|
T40 = KP353553390 * (T3d - T3g);
|
|
{
|
|
E T3V, T3W, T3E, T3F;
|
|
T3V = T3u + T3t;
|
|
T3W = T3x - T3w;
|
|
T3X = FNMS(KP461939766, T3W, KP191341716 * T3V);
|
|
T45 = FMA(KP461939766, T3V, KP191341716 * T3W);
|
|
T3E = T3c + T3b;
|
|
T3F = T3e - T3f;
|
|
T3G = KP353553390 * (T3E + T3F);
|
|
T3P = KP353553390 * (T3F - T3E);
|
|
}
|
|
T3o = T3m + T3n;
|
|
T3r = T3p - T3q;
|
|
T3s = FMA(KP191341716, T3o, KP461939766 * T3r);
|
|
T3K = FNMS(KP191341716, T3r, KP461939766 * T3o);
|
|
{
|
|
E T3S, T3T, T3v, T3y;
|
|
T3S = T3n - T3m;
|
|
T3T = T3q + T3p;
|
|
T3U = FMA(KP461939766, T3S, KP191341716 * T3T);
|
|
T44 = FNMS(KP461939766, T3T, KP191341716 * T3S);
|
|
T3v = T3t - T3u;
|
|
T3y = T3w + T3x;
|
|
T3z = FNMS(KP191341716, T3y, KP461939766 * T3v);
|
|
T3L = FMA(KP191341716, T3v, KP461939766 * T3y);
|
|
}
|
|
}
|
|
{
|
|
E T3l, T3A, T3N, T3O;
|
|
T3l = T3h + T3k;
|
|
T3A = T3s + T3z;
|
|
Ip[WS(rs, 1)] = T3l + T3A;
|
|
Im[WS(rs, 6)] = T3A - T3l;
|
|
T3N = T3D + T3G;
|
|
T3O = T3K + T3L;
|
|
Rm[WS(rs, 6)] = T3N - T3O;
|
|
Rp[WS(rs, 1)] = T3N + T3O;
|
|
}
|
|
{
|
|
E T3H, T3I, T3J, T3M;
|
|
T3H = T3D - T3G;
|
|
T3I = T3z - T3s;
|
|
Rm[WS(rs, 2)] = T3H - T3I;
|
|
Rp[WS(rs, 5)] = T3H + T3I;
|
|
T3J = T3k - T3h;
|
|
T3M = T3K - T3L;
|
|
Ip[WS(rs, 5)] = T3J + T3M;
|
|
Im[WS(rs, 2)] = T3M - T3J;
|
|
}
|
|
{
|
|
E T3R, T3Y, T47, T48;
|
|
T3R = T3P + T3Q;
|
|
T3Y = T3U + T3X;
|
|
Ip[WS(rs, 3)] = T3R + T3Y;
|
|
Im[WS(rs, 4)] = T3Y - T3R;
|
|
T47 = T3Z + T40;
|
|
T48 = T44 + T45;
|
|
Rm[WS(rs, 4)] = T47 - T48;
|
|
Rp[WS(rs, 3)] = T47 + T48;
|
|
}
|
|
{
|
|
E T41, T42, T43, T46;
|
|
T41 = T3Z - T40;
|
|
T42 = T3X - T3U;
|
|
Rm[0] = T41 - T42;
|
|
Rp[WS(rs, 7)] = T41 + T42;
|
|
T43 = T3Q - T3P;
|
|
T46 = T44 - T45;
|
|
Ip[WS(rs, 7)] = T43 + T46;
|
|
Im[0] = T46 - T43;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
{ TW_CEXP, 1, 1 },
|
|
{ TW_CEXP, 1, 3 },
|
|
{ TW_CEXP, 1, 9 },
|
|
{ TW_CEXP, 1, 15 },
|
|
{ TW_NEXT, 1, 0 }
|
|
};
|
|
|
|
static const hc2c_desc desc = { 16, "hc2cfdft2_16", twinstr, &GENUS, { 188, 84, 40, 0 } };
|
|
|
|
void X(codelet_hc2cfdft2_16) (planner *p) {
|
|
X(khc2c_register) (p, hc2cfdft2_16, &desc, HC2C_VIA_DFT);
|
|
}
|
|
#endif
|