furnace/extern/fftw/rdft/scalar/r2cb/r2cb_20.c
2022-05-31 03:24:29 -05:00

369 lines
11 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:48 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cb_20 -include rdft/scalar/r2cb.h */
/*
* This function contains 86 FP additions, 44 FP multiplications,
* (or, 42 additions, 0 multiplications, 44 fused multiply/add),
* 50 stack variables, 5 constants, and 40 memory accesses
*/
#include "rdft/scalar/r2cb.h"
static void r2cb_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
E T5, TD, Tl, Tr, TO, T1l, T1d, T10, T1k, TT, T11, T1a, Tc, Tj, Tk;
E Tw, TB, TC, Tm, Tn, To, TE, TF, TG;
{
E T4, Tq, T3, Tp, T1, T2;
T4 = Cr[WS(csr, 5)];
Tq = Ci[WS(csi, 5)];
T1 = Cr[0];
T2 = Cr[WS(csr, 10)];
T3 = T1 + T2;
Tp = T1 - T2;
T5 = FNMS(KP2_000000000, T4, T3);
TD = FNMS(KP2_000000000, Tq, Tp);
Tl = FMA(KP2_000000000, T4, T3);
Tr = FMA(KP2_000000000, Tq, Tp);
}
{
E T8, Ts, TR, T19, Tb, T18, Tv, TS, Tf, Tx, TM, T1c, Ti, T1b, TA;
E TN;
{
E T6, T7, TP, TQ;
T6 = Cr[WS(csr, 4)];
T7 = Cr[WS(csr, 6)];
T8 = T6 + T7;
Ts = T6 - T7;
TP = Ci[WS(csi, 4)];
TQ = Ci[WS(csi, 6)];
TR = TP - TQ;
T19 = TP + TQ;
}
{
E T9, Ta, Tt, Tu;
T9 = Cr[WS(csr, 9)];
Ta = Cr[WS(csr, 1)];
Tb = T9 + Ta;
T18 = T9 - Ta;
Tt = Ci[WS(csi, 9)];
Tu = Ci[WS(csi, 1)];
Tv = Tt + Tu;
TS = Tt - Tu;
}
{
E Td, Te, TK, TL;
Td = Cr[WS(csr, 8)];
Te = Cr[WS(csr, 2)];
Tf = Td + Te;
Tx = Td - Te;
TK = Ci[WS(csi, 8)];
TL = Ci[WS(csi, 2)];
TM = TK - TL;
T1c = TK + TL;
}
{
E Tg, Th, Ty, Tz;
Tg = Cr[WS(csr, 7)];
Th = Cr[WS(csr, 3)];
Ti = Tg + Th;
T1b = Tg - Th;
Ty = Ci[WS(csi, 7)];
Tz = Ci[WS(csi, 3)];
TA = Ty + Tz;
TN = Tz - Ty;
}
TO = TM - TN;
T1l = T19 - T18;
T1d = T1b + T1c;
T10 = TS + TR;
T1k = T1c - T1b;
TT = TR - TS;
T11 = TN + TM;
T1a = T18 + T19;
Tc = T8 - Tb;
Tj = Tf - Ti;
Tk = Tc + Tj;
Tw = Ts + Tv;
TB = Tx - TA;
TC = Tw + TB;
Tm = T8 + Tb;
Tn = Tf + Ti;
To = Tm + Tn;
TE = Ts - Tv;
TF = Tx + TA;
TG = TE + TF;
}
R0[WS(rs, 5)] = FMA(KP2_000000000, Tk, T5);
R1[WS(rs, 7)] = FMA(KP2_000000000, TC, Tr);
R1[WS(rs, 2)] = FMA(KP2_000000000, TG, TD);
R0[0] = FMA(KP2_000000000, To, Tl);
{
E TU, TW, TJ, TV, TH, TI;
TU = FNMS(KP618033988, TT, TO);
TW = FMA(KP618033988, TO, TT);
TH = FNMS(KP500000000, Tk, T5);
TI = Tc - Tj;
TJ = FNMS(KP1_118033988, TI, TH);
TV = FMA(KP1_118033988, TI, TH);
R0[WS(rs, 9)] = FNMS(KP1_902113032, TU, TJ);
R0[WS(rs, 7)] = FMA(KP1_902113032, TW, TV);
R0[WS(rs, 1)] = FMA(KP1_902113032, TU, TJ);
R0[WS(rs, 3)] = FNMS(KP1_902113032, TW, TV);
}
{
E T1e, T1g, T17, T1f, T15, T16;
T1e = FMA(KP618033988, T1d, T1a);
T1g = FNMS(KP618033988, T1a, T1d);
T15 = FNMS(KP500000000, TG, TD);
T16 = TE - TF;
T17 = FMA(KP1_118033988, T16, T15);
T1f = FNMS(KP1_118033988, T16, T15);
R1[0] = FNMS(KP1_902113032, T1e, T17);
R1[WS(rs, 8)] = FMA(KP1_902113032, T1g, T1f);
R1[WS(rs, 4)] = FMA(KP1_902113032, T1e, T17);
R1[WS(rs, 6)] = FNMS(KP1_902113032, T1g, T1f);
}
{
E T1m, T1o, T1j, T1n, T1h, T1i;
T1m = FNMS(KP618033988, T1l, T1k);
T1o = FMA(KP618033988, T1k, T1l);
T1h = FNMS(KP500000000, TC, Tr);
T1i = Tw - TB;
T1j = FNMS(KP1_118033988, T1i, T1h);
T1n = FMA(KP1_118033988, T1i, T1h);
R1[WS(rs, 1)] = FNMS(KP1_902113032, T1m, T1j);
R1[WS(rs, 9)] = FMA(KP1_902113032, T1o, T1n);
R1[WS(rs, 3)] = FMA(KP1_902113032, T1m, T1j);
R1[WS(rs, 5)] = FNMS(KP1_902113032, T1o, T1n);
}
{
E T12, T14, TZ, T13, TX, TY;
T12 = FMA(KP618033988, T11, T10);
T14 = FNMS(KP618033988, T10, T11);
TX = FNMS(KP500000000, To, Tl);
TY = Tm - Tn;
TZ = FMA(KP1_118033988, TY, TX);
T13 = FNMS(KP1_118033988, TY, TX);
R0[WS(rs, 8)] = FNMS(KP1_902113032, T12, TZ);
R0[WS(rs, 6)] = FMA(KP1_902113032, T14, T13);
R0[WS(rs, 2)] = FMA(KP1_902113032, T12, TZ);
R0[WS(rs, 4)] = FNMS(KP1_902113032, T14, T13);
}
}
}
}
static const kr2c_desc desc = { 20, "r2cb_20", { 42, 0, 44, 0 }, &GENUS };
void X(codelet_r2cb_20) (planner *p) { X(kr2c_register) (p, r2cb_20, &desc);
}
#else
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cb_20 -include rdft/scalar/r2cb.h */
/*
* This function contains 86 FP additions, 30 FP multiplications,
* (or, 70 additions, 14 multiplications, 16 fused multiply/add),
* 50 stack variables, 5 constants, and 40 memory accesses
*/
#include "rdft/scalar/r2cb.h"
static void r2cb_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
E T6, TF, Tm, Tt, TQ, T1n, T1f, T12, T1m, TV, T13, T1c, Td, Tk, Tl;
E Ty, TD, TE, Tn, To, Tp, TG, TH, TI;
{
E T5, Ts, T3, Tq;
{
E T4, Tr, T1, T2;
T4 = Cr[WS(csr, 5)];
T5 = KP2_000000000 * T4;
Tr = Ci[WS(csi, 5)];
Ts = KP2_000000000 * Tr;
T1 = Cr[0];
T2 = Cr[WS(csr, 10)];
T3 = T1 + T2;
Tq = T1 - T2;
}
T6 = T3 - T5;
TF = Tq - Ts;
Tm = T3 + T5;
Tt = Tq + Ts;
}
{
E T9, Tu, TO, T1b, Tc, T1a, Tx, TP, Tg, Tz, TT, T1e, Tj, T1d, TC;
E TU;
{
E T7, T8, TM, TN;
T7 = Cr[WS(csr, 4)];
T8 = Cr[WS(csr, 6)];
T9 = T7 + T8;
Tu = T7 - T8;
TM = Ci[WS(csi, 4)];
TN = Ci[WS(csi, 6)];
TO = TM - TN;
T1b = TM + TN;
}
{
E Ta, Tb, Tv, Tw;
Ta = Cr[WS(csr, 9)];
Tb = Cr[WS(csr, 1)];
Tc = Ta + Tb;
T1a = Ta - Tb;
Tv = Ci[WS(csi, 9)];
Tw = Ci[WS(csi, 1)];
Tx = Tv + Tw;
TP = Tv - Tw;
}
{
E Te, Tf, TR, TS;
Te = Cr[WS(csr, 8)];
Tf = Cr[WS(csr, 2)];
Tg = Te + Tf;
Tz = Te - Tf;
TR = Ci[WS(csi, 8)];
TS = Ci[WS(csi, 2)];
TT = TR - TS;
T1e = TR + TS;
}
{
E Th, Ti, TA, TB;
Th = Cr[WS(csr, 7)];
Ti = Cr[WS(csr, 3)];
Tj = Th + Ti;
T1d = Th - Ti;
TA = Ci[WS(csi, 7)];
TB = Ci[WS(csi, 3)];
TC = TA + TB;
TU = TB - TA;
}
TQ = TO - TP;
T1n = T1e - T1d;
T1f = T1d + T1e;
T12 = TP + TO;
T1m = T1b - T1a;
TV = TT - TU;
T13 = TU + TT;
T1c = T1a + T1b;
Td = T9 - Tc;
Tk = Tg - Tj;
Tl = Td + Tk;
Ty = Tu + Tx;
TD = Tz - TC;
TE = Ty + TD;
Tn = T9 + Tc;
To = Tg + Tj;
Tp = Tn + To;
TG = Tu - Tx;
TH = Tz + TC;
TI = TG + TH;
}
R0[WS(rs, 5)] = FMA(KP2_000000000, Tl, T6);
R1[WS(rs, 7)] = FMA(KP2_000000000, TE, Tt);
R1[WS(rs, 2)] = FMA(KP2_000000000, TI, TF);
R0[0] = FMA(KP2_000000000, Tp, Tm);
{
E TW, TY, TL, TX, TJ, TK;
TW = FNMS(KP1_902113032, TV, KP1_175570504 * TQ);
TY = FMA(KP1_902113032, TQ, KP1_175570504 * TV);
TJ = FNMS(KP500000000, Tl, T6);
TK = KP1_118033988 * (Td - Tk);
TL = TJ - TK;
TX = TK + TJ;
R0[WS(rs, 1)] = TL - TW;
R0[WS(rs, 7)] = TX + TY;
R0[WS(rs, 9)] = TL + TW;
R0[WS(rs, 3)] = TX - TY;
}
{
E T1g, T1i, T19, T1h, T17, T18;
T1g = FNMS(KP1_902113032, T1f, KP1_175570504 * T1c);
T1i = FMA(KP1_902113032, T1c, KP1_175570504 * T1f);
T17 = FNMS(KP500000000, TI, TF);
T18 = KP1_118033988 * (TG - TH);
T19 = T17 - T18;
T1h = T18 + T17;
R1[WS(rs, 8)] = T19 - T1g;
R1[WS(rs, 4)] = T1h + T1i;
R1[WS(rs, 6)] = T19 + T1g;
R1[0] = T1h - T1i;
}
{
E T1o, T1q, T1l, T1p, T1j, T1k;
T1o = FNMS(KP1_902113032, T1n, KP1_175570504 * T1m);
T1q = FMA(KP1_902113032, T1m, KP1_175570504 * T1n);
T1j = FNMS(KP500000000, TE, Tt);
T1k = KP1_118033988 * (Ty - TD);
T1l = T1j - T1k;
T1p = T1k + T1j;
R1[WS(rs, 3)] = T1l - T1o;
R1[WS(rs, 9)] = T1p + T1q;
R1[WS(rs, 1)] = T1l + T1o;
R1[WS(rs, 5)] = T1p - T1q;
}
{
E T14, T16, T11, T15, TZ, T10;
T14 = FNMS(KP1_902113032, T13, KP1_175570504 * T12);
T16 = FMA(KP1_902113032, T12, KP1_175570504 * T13);
TZ = FNMS(KP500000000, Tp, Tm);
T10 = KP1_118033988 * (Tn - To);
T11 = TZ - T10;
T15 = T10 + TZ;
R0[WS(rs, 6)] = T11 - T14;
R0[WS(rs, 2)] = T15 + T16;
R0[WS(rs, 4)] = T11 + T14;
R0[WS(rs, 8)] = T15 - T16;
}
}
}
}
static const kr2c_desc desc = { 20, "r2cb_20", { 70, 14, 16, 0 }, &GENUS };
void X(codelet_r2cb_20) (planner *p) { X(kr2c_register) (p, r2cb_20, &desc);
}
#endif