furnace/extern/fftw/rdft/scalar/r2cb/r2cb_13.c
2022-05-31 03:24:29 -05:00

369 lines
12 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:48 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 13 -name r2cb_13 -include rdft/scalar/r2cb.h */
/*
* This function contains 76 FP additions, 58 FP multiplications,
* (or, 18 additions, 0 multiplications, 58 fused multiply/add),
* 63 stack variables, 26 constants, and 26 memory accesses
*/
#include "rdft/scalar/r2cb.h"
static void r2cb_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP875502302, +0.875502302409147941146295545768755143177842006);
DK(KP1_040057143, +1.040057143777729238234261000998465604986476278);
DK(KP968287244, +0.968287244361984016049539446938120421179794516);
DK(KP1_150281458, +1.150281458948006242736771094910906776922003215);
DK(KP1_200954543, +1.200954543865330565851538506669526018704025697);
DK(KP769338817, +0.769338817572980603471413688209101117038278899);
DK(KP686558370, +0.686558370781754340655719594850823015421401653);
DK(KP226109445, +0.226109445035782405468510155372505010481906348);
DK(KP1_033041561, +1.033041561246979445681802577138034271410067244);
DK(KP581704778, +0.581704778510515730456870384989698884939833902);
DK(KP1_007074065, +1.007074065727533254493747707736933954186697125);
DK(KP600925212, +0.600925212577331548853203544578415991041882762);
DK(KP859542535, +0.859542535098774820163672132761689612766401925);
DK(KP503537032, +0.503537032863766627246873853868466977093348562);
DK(KP522026385, +0.522026385161275033714027226654165028300441940);
DK(KP957805992, +0.957805992594665126462521754605754580515587217);
DK(KP853480001, +0.853480001859823990758994934970528322872359049);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
DK(KP514918778, +0.514918778086315755491789696138117261566051239);
DK(KP301479260, +0.301479260047709873958013540496673347309208464);
DK(KP166666666, +0.166666666666666666666666666666666666666666667);
DK(KP612264650, +0.612264650376756543746494474777125408779395514);
DK(KP302775637, +0.302775637731994646559610633735247973125648287);
DK(KP038632954, +0.038632954644348171955506895830342264440241080);
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) {
E TG, TU, TN, T16, TJ, TV, T1, Tp, Tc, Td, Tg, Tj, Tk, Tm, Tn;
E To;
{
E Ts, Tv, Tw, TE, TB, TC, Tz, TD, TA, TF;
{
E Tt, Tu, Tx, Ty;
Ts = Ci[WS(csi, 5)];
Tt = Ci[WS(csi, 2)];
Tu = Ci[WS(csi, 6)];
Tv = Tt + Tu;
Tw = FNMS(KP500000000, Tv, Ts);
TE = Tu - Tt;
TB = Ci[WS(csi, 1)];
Tx = Ci[WS(csi, 3)];
Ty = Ci[WS(csi, 4)];
TC = Tx - Ty;
Tz = Tx + Ty;
TD = FNMS(KP500000000, TC, TB);
}
TA = FMA(KP866025403, Tz, Tw);
TF = FMA(KP866025403, TE, TD);
TG = FNMS(KP038632954, TF, TA);
TU = FMA(KP038632954, TA, TF);
{
E TL, TM, TH, TI;
TL = Ts + Tv;
TM = TB + TC;
TN = FMA(KP302775637, TM, TL);
T16 = FNMS(KP302775637, TL, TM);
TH = FNMS(KP866025403, Tz, Tw);
TI = FNMS(KP866025403, TE, TD);
TJ = FNMS(KP612264650, TI, TH);
TV = FMA(KP612264650, TH, TI);
}
}
{
E Tb, Ti, Tf, T6, Th, Te;
T1 = Cr[0];
{
E T7, T8, T9, Ta;
T7 = Cr[WS(csr, 5)];
T8 = Cr[WS(csr, 2)];
T9 = Cr[WS(csr, 6)];
Ta = T8 + T9;
Tb = T7 + Ta;
Ti = FMS(KP500000000, Ta, T7);
Tf = T8 - T9;
}
{
E T2, T3, T4, T5;
T2 = Cr[WS(csr, 1)];
T3 = Cr[WS(csr, 3)];
T4 = Cr[WS(csr, 4)];
T5 = T3 + T4;
T6 = T2 + T5;
Th = FNMS(KP500000000, T5, T2);
Te = T3 - T4;
}
Tp = T6 - Tb;
Tc = T6 + Tb;
Td = FNMS(KP166666666, Tc, T1);
Tg = Te + Tf;
Tj = Th - Ti;
Tk = FMA(KP301479260, Tj, Tg);
Tm = Th + Ti;
Tn = Te - Tf;
To = FNMS(KP514918778, Tn, Tm);
}
R0[0] = FMA(KP2_000000000, Tc, T1);
{
E TW, T14, TO, TS, T18, T1e, TR, T13, Tr, T1d, TZ, T19;
{
E TK, T17, TP, TQ;
TW = FMA(KP853480001, TV, TU);
T14 = FMA(KP853480001, TJ, TG);
TK = FNMS(KP853480001, TJ, TG);
TO = FMA(KP957805992, TN, TK);
TS = FNMS(KP522026385, TK, TN);
T17 = FNMS(KP853480001, TV, TU);
T18 = FNMS(KP522026385, T17, T16);
T1e = FMA(KP957805992, T16, T17);
TP = FNMS(KP503537032, Tk, Td);
TQ = FNMS(KP859542535, To, Tp);
TR = FMA(KP600925212, TQ, TP);
T13 = FNMS(KP600925212, TQ, TP);
{
E Tl, Tq, TX, TY;
Tl = FMA(KP1_007074065, Tk, Td);
Tq = FMA(KP581704778, Tp, To);
Tr = FMA(KP1_033041561, Tq, Tl);
T1d = FNMS(KP1_033041561, Tq, Tl);
TX = FNMS(KP226109445, Tg, Tj);
TY = FMA(KP686558370, Tm, Tn);
TZ = FNMS(KP769338817, TY, TX);
T19 = FMA(KP769338817, TY, TX);
}
}
R1[0] = FNMS(KP1_200954543, TO, Tr);
R1[WS(rs, 2)] = FNMS(KP1_200954543, T1e, T1d);
R0[WS(rs, 4)] = FMA(KP1_200954543, T1e, T1d);
R0[WS(rs, 6)] = FMA(KP1_200954543, TO, Tr);
{
E TT, T10, T15, T1a;
TT = FNMS(KP1_150281458, TS, TR);
T10 = FNMS(KP968287244, TZ, TW);
R1[WS(rs, 1)] = FNMS(KP1_040057143, T10, TT);
R1[WS(rs, 4)] = FMA(KP1_040057143, T10, TT);
T15 = FMA(KP1_040057143, T14, T13);
T1a = FNMS(KP875502302, T19, T18);
R0[WS(rs, 1)] = FNMS(KP1_150281458, T1a, T15);
R1[WS(rs, 3)] = FMA(KP1_150281458, T1a, T15);
}
{
E T1b, T1c, T11, T12;
T1b = FNMS(KP1_040057143, T14, T13);
T1c = FMA(KP875502302, T19, T18);
R0[WS(rs, 3)] = FNMS(KP1_150281458, T1c, T1b);
R1[WS(rs, 5)] = FMA(KP1_150281458, T1c, T1b);
T11 = FMA(KP1_150281458, TS, TR);
T12 = FMA(KP968287244, TZ, TW);
R0[WS(rs, 2)] = FNMS(KP1_040057143, T12, T11);
R0[WS(rs, 5)] = FMA(KP1_040057143, T12, T11);
}
}
}
}
}
static const kr2c_desc desc = { 13, "r2cb_13", { 18, 0, 58, 0 }, &GENUS };
void X(codelet_r2cb_13) (planner *p) { X(kr2c_register) (p, r2cb_13, &desc);
}
#else
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 13 -name r2cb_13 -include rdft/scalar/r2cb.h */
/*
* This function contains 76 FP additions, 35 FP multiplications,
* (or, 56 additions, 15 multiplications, 20 fused multiply/add),
* 56 stack variables, 19 constants, and 26 memory accesses
*/
#include "rdft/scalar/r2cb.h"
static void r2cb_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP1_007074065, +1.007074065727533254493747707736933954186697125);
DK(KP227708958, +0.227708958111581597949308691735310621069285120);
DK(KP531932498, +0.531932498429674575175042127684371897596660533);
DK(KP774781170, +0.774781170935234584261351932853525703557550433);
DK(KP265966249, +0.265966249214837287587521063842185948798330267);
DK(KP516520780, +0.516520780623489722840901288569017135705033622);
DK(KP151805972, +0.151805972074387731966205794490207080712856746);
DK(KP503537032, +0.503537032863766627246873853868466977093348562);
DK(KP166666666, +0.166666666666666666666666666666666666666666667);
DK(KP600925212, +0.600925212577331548853203544578415991041882762);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
DK(KP256247671, +0.256247671582936600958684654061725059144125175);
DK(KP156891391, +0.156891391051584611046832726756003269660212636);
DK(KP348277202, +0.348277202304271810011321589858529485233929352);
DK(KP1_150281458, +1.150281458948006242736771094910906776922003215);
DK(KP300238635, +0.300238635966332641462884626667381504676006424);
DK(KP011599105, +0.011599105605768290721655456654083252189827041);
DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) {
E TG, TS, TR, T15, TJ, TT, T1, Tm, Tc, Td, Tg, Tj, Tk, Tn, To;
E Tp;
{
E Ts, Tv, Tw, TE, TC, TB, Tz, TD, TA, TF;
{
E Tt, Tu, Tx, Ty;
Ts = Ci[WS(csi, 1)];
Tt = Ci[WS(csi, 3)];
Tu = Ci[WS(csi, 4)];
Tv = Tt - Tu;
Tw = FMS(KP2_000000000, Ts, Tv);
TE = KP1_732050807 * (Tt + Tu);
TC = Ci[WS(csi, 5)];
Tx = Ci[WS(csi, 6)];
Ty = Ci[WS(csi, 2)];
TB = Tx + Ty;
Tz = KP1_732050807 * (Tx - Ty);
TD = FNMS(KP2_000000000, TC, TB);
}
TA = Tw + Tz;
TF = TD - TE;
TG = FMA(KP011599105, TA, KP300238635 * TF);
TS = FNMS(KP011599105, TF, KP300238635 * TA);
{
E TP, TQ, TH, TI;
TP = Ts + Tv;
TQ = TB + TC;
TR = FNMS(KP348277202, TQ, KP1_150281458 * TP);
T15 = FMA(KP348277202, TP, KP1_150281458 * TQ);
TH = Tw - Tz;
TI = TE + TD;
TJ = FMA(KP156891391, TH, KP256247671 * TI);
TT = FNMS(KP256247671, TH, KP156891391 * TI);
}
}
{
E Tb, Ti, Tf, T6, Th, Te;
T1 = Cr[0];
{
E T7, T8, T9, Ta;
T7 = Cr[WS(csr, 5)];
T8 = Cr[WS(csr, 2)];
T9 = Cr[WS(csr, 6)];
Ta = T8 + T9;
Tb = T7 + Ta;
Ti = FNMS(KP500000000, Ta, T7);
Tf = T8 - T9;
}
{
E T2, T3, T4, T5;
T2 = Cr[WS(csr, 1)];
T3 = Cr[WS(csr, 3)];
T4 = Cr[WS(csr, 4)];
T5 = T3 + T4;
T6 = T2 + T5;
Th = FNMS(KP500000000, T5, T2);
Te = T3 - T4;
}
Tm = KP600925212 * (T6 - Tb);
Tc = T6 + Tb;
Td = FNMS(KP166666666, Tc, T1);
Tg = Te + Tf;
Tj = Th + Ti;
Tk = FMA(KP503537032, Tg, KP151805972 * Tj);
Tn = Th - Ti;
To = Te - Tf;
Tp = FNMS(KP265966249, To, KP516520780 * Tn);
}
R0[0] = FMA(KP2_000000000, Tc, T1);
{
E TK, T1b, TV, T12, T16, T18, TO, T1a, Tr, T17, T11, T13;
{
E TU, T14, TM, TN;
TK = KP1_732050807 * (TG + TJ);
T1b = KP1_732050807 * (TS - TT);
TU = TS + TT;
TV = TR - TU;
T12 = FMA(KP2_000000000, TU, TR);
T14 = TG - TJ;
T16 = FMS(KP2_000000000, T14, T15);
T18 = T14 + T15;
TM = FMA(KP774781170, To, KP531932498 * Tn);
TN = FNMS(KP1_007074065, Tj, KP227708958 * Tg);
TO = TM - TN;
T1a = TM + TN;
{
E Tl, Tq, TZ, T10;
Tl = Td - Tk;
Tq = Tm - Tp;
Tr = Tl - Tq;
T17 = Tq + Tl;
TZ = FMA(KP2_000000000, Tk, Td);
T10 = FMA(KP2_000000000, Tp, Tm);
T11 = TZ - T10;
T13 = T10 + TZ;
}
}
R1[WS(rs, 2)] = T11 - T12;
R0[WS(rs, 6)] = T13 - T16;
R1[0] = T13 + T16;
R0[WS(rs, 4)] = T11 + T12;
{
E TL, TW, T19, T1c;
TL = Tr - TK;
TW = TO - TV;
R1[WS(rs, 3)] = TL - TW;
R0[WS(rs, 1)] = TL + TW;
T19 = T17 - T18;
T1c = T1a + T1b;
R1[WS(rs, 1)] = T19 - T1c;
R1[WS(rs, 4)] = T1c + T19;
}
{
E T1d, T1e, TX, TY;
T1d = T1a - T1b;
T1e = T17 + T18;
R0[WS(rs, 2)] = T1d + T1e;
R0[WS(rs, 5)] = T1e - T1d;
TX = Tr + TK;
TY = TO + TV;
R0[WS(rs, 3)] = TX - TY;
R1[WS(rs, 5)] = TX + TY;
}
}
}
}
}
static const kr2c_desc desc = { 13, "r2cb_13", { 56, 15, 20, 0 }, &GENUS };
void X(codelet_r2cb_13) (planner *p) { X(kr2c_register) (p, r2cb_13, &desc);
}
#endif