furnace/extern/fftw/rdft/scalar/r2cb/r2cb_10.c
2022-05-31 03:24:29 -05:00

206 lines
6.6 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:47 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include rdft/scalar/r2cb.h */
/*
* This function contains 34 FP additions, 20 FP multiplications,
* (or, 14 additions, 0 multiplications, 20 fused multiply/add),
* 26 stack variables, 5 constants, and 20 memory accesses
*/
#include "rdft/scalar/r2cb.h"
static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
E T3, Tb, Tn, Tu, Tk, Tv, Ta, Ts, Te, Tg, Ti, Tj;
{
E T1, T2, Tl, Tm;
T1 = Cr[0];
T2 = Cr[WS(csr, 5)];
T3 = T1 - T2;
Tb = T1 + T2;
Tl = Ci[WS(csi, 2)];
Tm = Ci[WS(csi, 3)];
Tn = Tl - Tm;
Tu = Tl + Tm;
}
Ti = Ci[WS(csi, 4)];
Tj = Ci[WS(csi, 1)];
Tk = Ti - Tj;
Tv = Ti + Tj;
{
E T6, Tc, T9, Td;
{
E T4, T5, T7, T8;
T4 = Cr[WS(csr, 2)];
T5 = Cr[WS(csr, 3)];
T6 = T4 - T5;
Tc = T4 + T5;
T7 = Cr[WS(csr, 4)];
T8 = Cr[WS(csr, 1)];
T9 = T7 - T8;
Td = T7 + T8;
}
Ta = T6 + T9;
Ts = T6 - T9;
Te = Tc + Td;
Tg = Tc - Td;
}
R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3);
R0[0] = FMA(KP2_000000000, Te, Tb);
{
E To, Tq, Th, Tp, Tf;
To = FNMS(KP618033988, Tn, Tk);
Tq = FMA(KP618033988, Tk, Tn);
Tf = FNMS(KP500000000, Te, Tb);
Th = FNMS(KP1_118033988, Tg, Tf);
Tp = FMA(KP1_118033988, Tg, Tf);
R0[WS(rs, 4)] = FNMS(KP1_902113032, To, Th);
R0[WS(rs, 2)] = FMA(KP1_902113032, Tq, Tp);
R0[WS(rs, 1)] = FMA(KP1_902113032, To, Th);
R0[WS(rs, 3)] = FNMS(KP1_902113032, Tq, Tp);
}
{
E Tw, Ty, Tt, Tx, Tr;
Tw = FMA(KP618033988, Tv, Tu);
Ty = FNMS(KP618033988, Tu, Tv);
Tr = FNMS(KP500000000, Ta, T3);
Tt = FMA(KP1_118033988, Ts, Tr);
Tx = FNMS(KP1_118033988, Ts, Tr);
R1[0] = FNMS(KP1_902113032, Tw, Tt);
R1[WS(rs, 3)] = FMA(KP1_902113032, Ty, Tx);
R1[WS(rs, 4)] = FMA(KP1_902113032, Tw, Tt);
R1[WS(rs, 1)] = FNMS(KP1_902113032, Ty, Tx);
}
}
}
}
static const kr2c_desc desc = { 10, "r2cb_10", { 14, 0, 20, 0 }, &GENUS };
void X(codelet_r2cb_10) (planner *p) { X(kr2c_register) (p, r2cb_10, &desc);
}
#else
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include rdft/scalar/r2cb.h */
/*
* This function contains 34 FP additions, 14 FP multiplications,
* (or, 26 additions, 6 multiplications, 8 fused multiply/add),
* 26 stack variables, 5 constants, and 20 memory accesses
*/
#include "rdft/scalar/r2cb.h"
static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
E T3, Tb, Tn, Tv, Tk, Tu, Ta, Ts, Te, Tg, Ti, Tj;
{
E T1, T2, Tl, Tm;
T1 = Cr[0];
T2 = Cr[WS(csr, 5)];
T3 = T1 - T2;
Tb = T1 + T2;
Tl = Ci[WS(csi, 4)];
Tm = Ci[WS(csi, 1)];
Tn = Tl - Tm;
Tv = Tl + Tm;
}
Ti = Ci[WS(csi, 2)];
Tj = Ci[WS(csi, 3)];
Tk = Ti - Tj;
Tu = Ti + Tj;
{
E T6, Tc, T9, Td;
{
E T4, T5, T7, T8;
T4 = Cr[WS(csr, 2)];
T5 = Cr[WS(csr, 3)];
T6 = T4 - T5;
Tc = T4 + T5;
T7 = Cr[WS(csr, 4)];
T8 = Cr[WS(csr, 1)];
T9 = T7 - T8;
Td = T7 + T8;
}
Ta = T6 + T9;
Ts = KP1_118033988 * (T6 - T9);
Te = Tc + Td;
Tg = KP1_118033988 * (Tc - Td);
}
R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3);
R0[0] = FMA(KP2_000000000, Te, Tb);
{
E To, Tq, Th, Tp, Tf;
To = FNMS(KP1_902113032, Tn, KP1_175570504 * Tk);
Tq = FMA(KP1_902113032, Tk, KP1_175570504 * Tn);
Tf = FNMS(KP500000000, Te, Tb);
Th = Tf - Tg;
Tp = Tg + Tf;
R0[WS(rs, 1)] = Th - To;
R0[WS(rs, 2)] = Tp + Tq;
R0[WS(rs, 4)] = Th + To;
R0[WS(rs, 3)] = Tp - Tq;
}
{
E Tw, Ty, Tt, Tx, Tr;
Tw = FNMS(KP1_902113032, Tv, KP1_175570504 * Tu);
Ty = FMA(KP1_902113032, Tu, KP1_175570504 * Tv);
Tr = FNMS(KP500000000, Ta, T3);
Tt = Tr - Ts;
Tx = Ts + Tr;
R1[WS(rs, 3)] = Tt - Tw;
R1[WS(rs, 4)] = Tx + Ty;
R1[WS(rs, 1)] = Tt + Tw;
R1[0] = Tx - Ty;
}
}
}
}
static const kr2c_desc desc = { 10, "r2cb_10", { 26, 6, 8, 0 }, &GENUS };
void X(codelet_r2cb_10) (planner *p) { X(kr2c_register) (p, r2cb_10, &desc);
}
#endif