furnace/extern/fftw/rdft/scalar/r2cb/r2cbIII_9.c
2022-05-31 03:24:29 -05:00

209 lines
7.6 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:47:00 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cbIII_9 -dft-III -include rdft/scalar/r2cbIII.h */
/*
* This function contains 32 FP additions, 24 FP multiplications,
* (or, 8 additions, 0 multiplications, 24 fused multiply/add),
* 35 stack variables, 12 constants, and 18 memory accesses
*/
#include "rdft/scalar/r2cbIII.h"
static void r2cbIII_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP1_705737063, +1.705737063904886419256501927880148143872040591);
DK(KP1_969615506, +1.969615506024416118733486049179046027341286503);
DK(KP984807753, +0.984807753012208059366743024589523013670643252);
DK(KP176326980, +0.176326980708464973471090386868618986121633062);
DK(KP1_326827896, +1.326827896337876792410842639271782594433726619);
DK(KP1_532088886, +1.532088886237956070404785301110833347871664914);
DK(KP766044443, +0.766044443118978035202392650555416673935832457);
DK(KP839099631, +0.839099631177280011763127298123181364687434283);
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
E T3, Tr, Th, Td, Tc, T8, Tn, Ts, Tk, Tt, T9, Te;
{
E Tg, T1, T2, Tf;
Tg = Ci[WS(csi, 1)];
T1 = Cr[WS(csr, 4)];
T2 = Cr[WS(csr, 1)];
Tf = T2 - T1;
T3 = FMA(KP2_000000000, T2, T1);
Tr = FMA(KP1_732050807, Tg, Tf);
Th = FNMS(KP1_732050807, Tg, Tf);
}
{
E T4, T7, Tm, Tj, Tl, Ti;
T4 = Cr[WS(csr, 3)];
Td = Ci[WS(csi, 3)];
{
E T5, T6, Ta, Tb;
T5 = Cr[0];
T6 = Cr[WS(csr, 2)];
T7 = T5 + T6;
Tm = T5 - T6;
Ta = Ci[WS(csi, 2)];
Tb = Ci[0];
Tc = Ta - Tb;
Tj = Tb + Ta;
}
T8 = T4 + T7;
Tl = FMA(KP500000000, Tc, Td);
Tn = FNMS(KP866025403, Tm, Tl);
Ts = FMA(KP866025403, Tm, Tl);
Ti = FNMS(KP500000000, T7, T4);
Tk = FMA(KP866025403, Tj, Ti);
Tt = FNMS(KP866025403, Tj, Ti);
}
R0[0] = FMA(KP2_000000000, T8, T3);
T9 = T8 - T3;
Te = Tc - Td;
R1[WS(rs, 1)] = FMA(KP1_732050807, Te, T9);
R0[WS(rs, 3)] = FMS(KP1_732050807, Te, T9);
{
E Tq, To, Tp, Tw, Tu, Tv;
Tq = FNMS(KP839099631, Tk, Tn);
To = FMA(KP839099631, Tn, Tk);
Tp = FMA(KP766044443, To, Th);
R1[0] = FNMS(KP1_532088886, To, Th);
R1[WS(rs, 3)] = FMA(KP1_326827896, Tq, Tp);
R0[WS(rs, 2)] = FMS(KP1_326827896, Tq, Tp);
Tw = FNMS(KP176326980, Ts, Tt);
Tu = FMA(KP176326980, Tt, Ts);
Tv = FMA(KP984807753, Tu, Tr);
R0[WS(rs, 1)] = FMS(KP1_969615506, Tu, Tr);
R1[WS(rs, 2)] = FMA(KP1_705737063, Tw, Tv);
R0[WS(rs, 4)] = FMS(KP1_705737063, Tw, Tv);
}
}
}
}
static const kr2c_desc desc = { 9, "r2cbIII_9", { 8, 0, 24, 0 }, &GENUS };
void X(codelet_r2cbIII_9) (planner *p) { X(kr2c_register) (p, r2cbIII_9, &desc);
}
#else
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cbIII_9 -dft-III -include rdft/scalar/r2cbIII.h */
/*
* This function contains 32 FP additions, 18 FP multiplications,
* (or, 22 additions, 8 multiplications, 10 fused multiply/add),
* 35 stack variables, 12 constants, and 18 memory accesses
*/
#include "rdft/scalar/r2cbIII.h"
static void r2cbIII_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP642787609, +0.642787609686539326322643409907263432907559884);
DK(KP766044443, +0.766044443118978035202392650555416673935832457);
DK(KP1_326827896, +1.326827896337876792410842639271782594433726619);
DK(KP1_113340798, +1.113340798452838732905825904094046265936583811);
DK(KP984807753, +0.984807753012208059366743024589523013670643252);
DK(KP173648177, +0.173648177666930348851716626769314796000375677);
DK(KP1_705737063, +1.705737063904886419256501927880148143872040591);
DK(KP300767466, +0.300767466360870593278543795225003852144476517);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
E T3, Ts, Ti, Td, Tc, T8, To, Tu, Tl, Tt, T9, Te;
{
E Th, T1, T2, Tf, Tg;
Tg = Ci[WS(csi, 1)];
Th = KP1_732050807 * Tg;
T1 = Cr[WS(csr, 4)];
T2 = Cr[WS(csr, 1)];
Tf = T2 - T1;
T3 = FMA(KP2_000000000, T2, T1);
Ts = Tf - Th;
Ti = Tf + Th;
}
{
E T4, T7, Tm, Tk, Tn, Tj;
T4 = Cr[WS(csr, 3)];
Td = Ci[WS(csi, 3)];
{
E T5, T6, Ta, Tb;
T5 = Cr[0];
T6 = Cr[WS(csr, 2)];
T7 = T5 + T6;
Tm = KP866025403 * (T6 - T5);
Ta = Ci[WS(csi, 2)];
Tb = Ci[0];
Tc = Ta - Tb;
Tk = KP866025403 * (Tb + Ta);
}
T8 = T4 + T7;
Tn = FMA(KP500000000, Tc, Td);
To = Tm - Tn;
Tu = Tm + Tn;
Tj = FMS(KP500000000, T7, T4);
Tl = Tj + Tk;
Tt = Tj - Tk;
}
R0[0] = FMA(KP2_000000000, T8, T3);
T9 = T8 - T3;
Te = KP1_732050807 * (Tc - Td);
R1[WS(rs, 1)] = T9 + Te;
R0[WS(rs, 3)] = Te - T9;
{
E Tr, Tp, Tq, Tx, Tv, Tw;
Tr = FNMS(KP1_705737063, Tl, KP300767466 * To);
Tp = FMA(KP173648177, Tl, KP984807753 * To);
Tq = Ti - Tp;
R0[WS(rs, 1)] = -(FMA(KP2_000000000, Tp, Ti));
R0[WS(rs, 4)] = Tr - Tq;
R1[WS(rs, 2)] = Tq + Tr;
Tx = FMA(KP1_113340798, Tt, KP1_326827896 * Tu);
Tv = FNMS(KP642787609, Tu, KP766044443 * Tt);
Tw = Tv - Ts;
R1[0] = FMA(KP2_000000000, Tv, Ts);
R1[WS(rs, 3)] = Tx - Tw;
R0[WS(rs, 2)] = Tw + Tx;
}
}
}
}
static const kr2c_desc desc = { 9, "r2cbIII_9", { 22, 8, 10, 0 }, &GENUS };
void X(codelet_r2cbIII_9) (planner *p) { X(kr2c_register) (p, r2cbIII_9, &desc);
}
#endif