furnace/extern/fftw/rdft/scalar/r2cb/r2cbIII_20.c
2022-05-31 03:24:29 -05:00

410 lines
12 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:47:04 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cbIII_20 -dft-III -include rdft/scalar/r2cbIII.h */
/*
* This function contains 94 FP additions, 56 FP multiplications,
* (or, 58 additions, 20 multiplications, 36 fused multiply/add),
* 43 stack variables, 6 constants, and 40 memory accesses
*/
#include "rdft/scalar/r2cbIII.h"
static void r2cbIII_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
E T1, Tk, T1l, TZ, T8, Tj, TQ, Ts, TV, TI, TT, TU, Ta, Tv, T1i;
E T1a, Th, Tu, T11, TD, T16, TL, T14, T15;
{
E T7, TY, T4, TX;
T1 = Cr[WS(csr, 2)];
{
E T5, T6, T2, T3;
T5 = Cr[WS(csr, 9)];
T6 = Cr[WS(csr, 5)];
T7 = T5 + T6;
TY = T5 - T6;
T2 = Cr[WS(csr, 6)];
T3 = Cr[WS(csr, 1)];
T4 = T2 + T3;
TX = T2 - T3;
}
Tk = T4 - T7;
T1l = FNMS(KP618033988, TX, TY);
TZ = FMA(KP618033988, TY, TX);
T8 = T4 + T7;
Tj = FNMS(KP250000000, T8, T1);
}
{
E Tr, TS, To, TR;
TQ = Ci[WS(csi, 2)];
{
E Tp, Tq, Tm, Tn;
Tp = Ci[WS(csi, 5)];
Tq = Ci[WS(csi, 9)];
Tr = Tp - Tq;
TS = Tp + Tq;
Tm = Ci[WS(csi, 6)];
Tn = Ci[WS(csi, 1)];
To = Tm + Tn;
TR = Tm - Tn;
}
Ts = FMA(KP618033988, Tr, To);
TV = TR + TS;
TI = FNMS(KP618033988, To, Tr);
TT = TR - TS;
TU = FNMS(KP250000000, TT, TQ);
}
{
E Tg, T19, Td, T18;
Ta = Cr[WS(csr, 7)];
{
E Te, Tf, Tb, Tc;
Te = Cr[0];
Tf = Cr[WS(csr, 4)];
Tg = Te + Tf;
T19 = Te - Tf;
Tb = Cr[WS(csr, 3)];
Tc = Cr[WS(csr, 8)];
Td = Tb + Tc;
T18 = Tb - Tc;
}
Tv = Td - Tg;
T1i = FNMS(KP618033988, T18, T19);
T1a = FMA(KP618033988, T19, T18);
Th = Td + Tg;
Tu = FNMS(KP250000000, Th, Ta);
}
{
E TC, T13, Tz, T12;
T11 = Ci[WS(csi, 7)];
{
E TA, TB, Tx, Ty;
TA = Ci[WS(csi, 4)];
TB = Ci[0];
TC = TA - TB;
T13 = TB + TA;
Tx = Ci[WS(csi, 3)];
Ty = Ci[WS(csi, 8)];
Tz = Tx + Ty;
T12 = Tx - Ty;
}
TD = FMA(KP618033988, TC, Tz);
T16 = T12 + T13;
TL = FNMS(KP618033988, Tz, TC);
T14 = T12 - T13;
T15 = FNMS(KP250000000, T14, T11);
}
{
E T9, Ti, T1w, T1t, T1u, T1v;
T9 = T1 + T8;
Ti = Ta + Th;
T1w = T9 - Ti;
T1t = TT + TQ;
T1u = T14 + T11;
T1v = T1t + T1u;
R0[0] = KP2_000000000 * (T9 + Ti);
R0[WS(rs, 5)] = KP2_000000000 * (T1u - T1t);
R1[WS(rs, 2)] = KP1_414213562 * (T1v - T1w);
R1[WS(rs, 7)] = KP1_414213562 * (T1w + T1v);
}
{
E TJ, TN, T1m, T1q, TM, TO, T1j, T1r;
{
E TH, T1k, TK, T1h;
TH = FNMS(KP559016994, Tk, Tj);
TJ = FNMS(KP951056516, TI, TH);
TN = FMA(KP951056516, TI, TH);
T1k = FNMS(KP559016994, TV, TU);
T1m = FNMS(KP951056516, T1l, T1k);
T1q = FMA(KP951056516, T1l, T1k);
TK = FNMS(KP559016994, Tv, Tu);
TM = FMA(KP951056516, TL, TK);
TO = FNMS(KP951056516, TL, TK);
T1h = FNMS(KP559016994, T16, T15);
T1j = FMA(KP951056516, T1i, T1h);
T1r = FNMS(KP951056516, T1i, T1h);
}
R0[WS(rs, 4)] = KP2_000000000 * (TJ + TM);
R0[WS(rs, 6)] = -(KP2_000000000 * (TN + TO));
R0[WS(rs, 9)] = KP2_000000000 * (T1r - T1q);
R0[WS(rs, 1)] = KP2_000000000 * (T1j - T1m);
{
E T1p, T1s, T1n, T1o;
T1p = TM - TJ;
T1s = T1q + T1r;
R1[WS(rs, 1)] = KP1_414213562 * (T1p - T1s);
R1[WS(rs, 6)] = KP1_414213562 * (T1p + T1s);
T1n = TN - TO;
T1o = T1m + T1j;
R1[WS(rs, 8)] = KP1_414213562 * (T1n - T1o);
R1[WS(rs, 3)] = KP1_414213562 * (T1n + T1o);
}
}
{
E Tt, TF, T1b, T1f, TE, TG, T10, T1e;
{
E Tl, T17, Tw, TW;
Tl = FMA(KP559016994, Tk, Tj);
Tt = FNMS(KP951056516, Ts, Tl);
TF = FMA(KP951056516, Ts, Tl);
T17 = FMA(KP559016994, T16, T15);
T1b = FNMS(KP951056516, T1a, T17);
T1f = FMA(KP951056516, T1a, T17);
Tw = FMA(KP559016994, Tv, Tu);
TE = FMA(KP951056516, TD, Tw);
TG = FNMS(KP951056516, TD, Tw);
TW = FMA(KP559016994, TV, TU);
T10 = FMA(KP951056516, TZ, TW);
T1e = FNMS(KP951056516, TZ, TW);
}
R0[WS(rs, 8)] = KP2_000000000 * (Tt + TE);
R0[WS(rs, 2)] = -(KP2_000000000 * (TF + TG));
R0[WS(rs, 7)] = KP2_000000000 * (T1e - T1f);
R0[WS(rs, 3)] = KP2_000000000 * (T10 - T1b);
{
E T1d, T1g, TP, T1c;
T1d = TF - TG;
T1g = T1e + T1f;
R1[WS(rs, 4)] = KP1_414213562 * (T1d - T1g);
R1[WS(rs, 9)] = -(KP1_414213562 * (T1d + T1g));
TP = Tt - TE;
T1c = T10 + T1b;
R1[0] = KP1_414213562 * (TP - T1c);
R1[WS(rs, 5)] = -(KP1_414213562 * (TP + T1c));
}
}
}
}
}
static const kr2c_desc desc = { 20, "r2cbIII_20", { 58, 20, 36, 0 }, &GENUS };
void X(codelet_r2cbIII_20) (planner *p) { X(kr2c_register) (p, r2cbIII_20, &desc);
}
#else
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cbIII_20 -dft-III -include rdft/scalar/r2cbIII.h */
/*
* This function contains 94 FP additions, 44 FP multiplications,
* (or, 82 additions, 32 multiplications, 12 fused multiply/add),
* 43 stack variables, 6 constants, and 40 memory accesses
*/
#include "rdft/scalar/r2cbIII.h"
static void r2cbIII_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP587785252, +0.587785252292473129168705954639072768597652438);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
E T1, Tj, T1k, T13, T8, Tk, T17, Ts, T16, TI, T18, T19, Ta, Tu, T1i;
E TS, Th, Tv, TX, TD, TV, TL, TW, TY;
{
E T7, T12, T4, T11;
T1 = Cr[WS(csr, 2)];
{
E T5, T6, T2, T3;
T5 = Cr[WS(csr, 9)];
T6 = Cr[WS(csr, 5)];
T7 = T5 + T6;
T12 = T5 - T6;
T2 = Cr[WS(csr, 6)];
T3 = Cr[WS(csr, 1)];
T4 = T2 + T3;
T11 = T2 - T3;
}
Tj = KP559016994 * (T4 - T7);
T1k = FNMS(KP951056516, T12, KP587785252 * T11);
T13 = FMA(KP951056516, T11, KP587785252 * T12);
T8 = T4 + T7;
Tk = FNMS(KP250000000, T8, T1);
}
{
E Tr, T15, To, T14;
T17 = Ci[WS(csi, 2)];
{
E Tp, Tq, Tm, Tn;
Tp = Ci[WS(csi, 5)];
Tq = Ci[WS(csi, 9)];
Tr = Tp - Tq;
T15 = Tp + Tq;
Tm = Ci[WS(csi, 6)];
Tn = Ci[WS(csi, 1)];
To = Tm + Tn;
T14 = Tm - Tn;
}
Ts = FMA(KP951056516, To, KP587785252 * Tr);
T16 = KP559016994 * (T14 + T15);
TI = FNMS(KP951056516, Tr, KP587785252 * To);
T18 = T14 - T15;
T19 = FNMS(KP250000000, T18, T17);
}
{
E Tg, TR, Td, TQ;
Ta = Cr[WS(csr, 7)];
{
E Te, Tf, Tb, Tc;
Te = Cr[0];
Tf = Cr[WS(csr, 4)];
Tg = Te + Tf;
TR = Te - Tf;
Tb = Cr[WS(csr, 3)];
Tc = Cr[WS(csr, 8)];
Td = Tb + Tc;
TQ = Tb - Tc;
}
Tu = KP559016994 * (Td - Tg);
T1i = FNMS(KP951056516, TR, KP587785252 * TQ);
TS = FMA(KP951056516, TQ, KP587785252 * TR);
Th = Td + Tg;
Tv = FNMS(KP250000000, Th, Ta);
}
{
E TC, TU, Tz, TT;
TX = Ci[WS(csi, 7)];
{
E TA, TB, Tx, Ty;
TA = Ci[WS(csi, 4)];
TB = Ci[0];
TC = TA - TB;
TU = TB + TA;
Tx = Ci[WS(csi, 3)];
Ty = Ci[WS(csi, 8)];
Tz = Tx + Ty;
TT = Ty - Tx;
}
TD = FMA(KP951056516, Tz, KP587785252 * TC);
TV = KP559016994 * (TT - TU);
TL = FNMS(KP587785252, Tz, KP951056516 * TC);
TW = TT + TU;
TY = FMA(KP250000000, TW, TX);
}
{
E T9, Ti, T1w, T1t, T1u, T1v;
T9 = T1 + T8;
Ti = Ta + Th;
T1w = T9 - Ti;
T1t = T18 + T17;
T1u = TX - TW;
T1v = T1t + T1u;
R0[0] = KP2_000000000 * (T9 + Ti);
R0[WS(rs, 5)] = KP2_000000000 * (T1u - T1t);
R1[WS(rs, 2)] = KP1_414213562 * (T1v - T1w);
R1[WS(rs, 7)] = KP1_414213562 * (T1w + T1v);
}
{
E TJ, TO, T1m, T1q, TM, TN, T1j, T1r;
{
E TH, T1l, TK, T1h;
TH = Tk - Tj;
TJ = TH + TI;
TO = TH - TI;
T1l = T19 - T16;
T1m = T1k + T1l;
T1q = T1l - T1k;
TK = Tv - Tu;
TM = TK + TL;
TN = TL - TK;
T1h = TV + TY;
T1j = T1h - T1i;
T1r = T1i + T1h;
}
R0[WS(rs, 4)] = KP2_000000000 * (TJ + TM);
R0[WS(rs, 6)] = KP2_000000000 * (TN - TO);
R0[WS(rs, 9)] = KP2_000000000 * (T1r - T1q);
R0[WS(rs, 1)] = KP2_000000000 * (T1j - T1m);
{
E T1p, T1s, T1n, T1o;
T1p = TM - TJ;
T1s = T1q + T1r;
R1[WS(rs, 1)] = KP1_414213562 * (T1p - T1s);
R1[WS(rs, 6)] = KP1_414213562 * (T1p + T1s);
T1n = TO + TN;
T1o = T1m + T1j;
R1[WS(rs, 8)] = KP1_414213562 * (T1n - T1o);
R1[WS(rs, 3)] = KP1_414213562 * (T1n + T1o);
}
}
{
E Tt, TG, T1b, T1f, TE, TF, T10, T1e;
{
E Tl, T1a, Tw, TZ;
Tl = Tj + Tk;
Tt = Tl - Ts;
TG = Tl + Ts;
T1a = T16 + T19;
T1b = T13 + T1a;
T1f = T1a - T13;
Tw = Tu + Tv;
TE = Tw + TD;
TF = TD - Tw;
TZ = TV - TY;
T10 = TS + TZ;
T1e = TZ - TS;
}
R0[WS(rs, 8)] = KP2_000000000 * (Tt + TE);
R0[WS(rs, 2)] = KP2_000000000 * (TF - TG);
R0[WS(rs, 7)] = KP2_000000000 * (T1f + T1e);
R0[WS(rs, 3)] = KP2_000000000 * (T1b + T10);
{
E T1d, T1g, TP, T1c;
T1d = TG + TF;
T1g = T1e - T1f;
R1[WS(rs, 4)] = KP1_414213562 * (T1d + T1g);
R1[WS(rs, 9)] = KP1_414213562 * (T1g - T1d);
TP = Tt - TE;
T1c = T10 - T1b;
R1[0] = KP1_414213562 * (TP + T1c);
R1[WS(rs, 5)] = KP1_414213562 * (T1c - TP);
}
}
}
}
}
static const kr2c_desc desc = { 20, "r2cbIII_20", { 82, 32, 12, 0 }, &GENUS };
void X(codelet_r2cbIII_20) (planner *p) { X(kr2c_register) (p, r2cbIII_20, &desc);
}
#endif