furnace/extern/fftw/rdft/scalar/r2cb/hb_5.c
2022-05-31 03:24:29 -05:00

274 lines
7.3 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:50 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 5 -dif -name hb_5 -include rdft/scalar/hb.h */
/*
* This function contains 40 FP additions, 34 FP multiplications,
* (or, 14 additions, 8 multiplications, 26 fused multiply/add),
* 27 stack variables, 4 constants, and 20 memory accesses
*/
#include "rdft/scalar/hb.h"
static void hb_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
E T1, Tb, TM, Tw, T8, Ta, Tn, Tj, TH, Ts, Tq, Tr;
{
E T4, Tu, T7, Tv;
T1 = cr[0];
{
E T2, T3, T5, T6;
T2 = cr[WS(rs, 1)];
T3 = ci[0];
T4 = T2 + T3;
Tu = T2 - T3;
T5 = cr[WS(rs, 2)];
T6 = ci[WS(rs, 1)];
T7 = T5 + T6;
Tv = T5 - T6;
}
Tb = T4 - T7;
TM = FNMS(KP618033988, Tu, Tv);
Tw = FMA(KP618033988, Tv, Tu);
T8 = T4 + T7;
Ta = FNMS(KP250000000, T8, T1);
}
{
E Tf, To, Ti, Tp;
Tn = ci[WS(rs, 4)];
{
E Td, Te, Tg, Th;
Td = ci[WS(rs, 3)];
Te = cr[WS(rs, 4)];
Tf = Td + Te;
To = Td - Te;
Tg = ci[WS(rs, 2)];
Th = cr[WS(rs, 3)];
Ti = Tg + Th;
Tp = Tg - Th;
}
Tj = FMA(KP618033988, Ti, Tf);
TH = FNMS(KP618033988, Tf, Ti);
Ts = To - Tp;
Tq = To + Tp;
Tr = FNMS(KP250000000, Tq, Tn);
}
cr[0] = T1 + T8;
ci[0] = Tn + Tq;
{
E Tk, TA, Tx, TD, Tc, Tt;
Tc = FMA(KP559016994, Tb, Ta);
Tk = FNMS(KP951056516, Tj, Tc);
TA = FMA(KP951056516, Tj, Tc);
Tt = FMA(KP559016994, Ts, Tr);
Tx = FMA(KP951056516, Tw, Tt);
TD = FNMS(KP951056516, Tw, Tt);
{
E T9, Tl, Tm, Ty;
T9 = W[0];
Tl = T9 * Tk;
Tm = W[1];
Ty = Tm * Tk;
cr[WS(rs, 1)] = FNMS(Tm, Tx, Tl);
ci[WS(rs, 1)] = FMA(T9, Tx, Ty);
}
{
E Tz, TB, TC, TE;
Tz = W[6];
TB = Tz * TA;
TC = W[7];
TE = TC * TA;
cr[WS(rs, 4)] = FNMS(TC, TD, TB);
ci[WS(rs, 4)] = FMA(Tz, TD, TE);
}
}
{
E TI, TQ, TN, TT, TG, TL;
TG = FNMS(KP559016994, Tb, Ta);
TI = FMA(KP951056516, TH, TG);
TQ = FNMS(KP951056516, TH, TG);
TL = FNMS(KP559016994, Ts, Tr);
TN = FNMS(KP951056516, TM, TL);
TT = FMA(KP951056516, TM, TL);
{
E TF, TJ, TK, TO;
TF = W[2];
TJ = TF * TI;
TK = W[3];
TO = TK * TI;
cr[WS(rs, 2)] = FNMS(TK, TN, TJ);
ci[WS(rs, 2)] = FMA(TF, TN, TO);
}
{
E TP, TR, TS, TU;
TP = W[4];
TR = TP * TQ;
TS = W[5];
TU = TS * TQ;
cr[WS(rs, 3)] = FNMS(TS, TT, TR);
ci[WS(rs, 3)] = FMA(TP, TT, TU);
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 5 },
{ TW_NEXT, 1, 0 }
};
static const hc2hc_desc desc = { 5, "hb_5", twinstr, &GENUS, { 14, 8, 26, 0 } };
void X(codelet_hb_5) (planner *p) {
X(khc2hc_register) (p, hb_5, &desc);
}
#else
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 5 -dif -name hb_5 -include rdft/scalar/hb.h */
/*
* This function contains 40 FP additions, 28 FP multiplications,
* (or, 26 additions, 14 multiplications, 14 fused multiply/add),
* 27 stack variables, 4 constants, and 20 memory accesses
*/
#include "rdft/scalar/hb.h"
static void hb_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP587785252, +0.587785252292473129168705954639072768597652438);
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
E T1, Tj, TG, Ts, T8, Ti, T9, Tn, TD, Tu, Tg, Tt;
{
E T4, Tq, T7, Tr;
T1 = cr[0];
{
E T2, T3, T5, T6;
T2 = cr[WS(rs, 1)];
T3 = ci[0];
T4 = T2 + T3;
Tq = T2 - T3;
T5 = cr[WS(rs, 2)];
T6 = ci[WS(rs, 1)];
T7 = T5 + T6;
Tr = T5 - T6;
}
Tj = KP559016994 * (T4 - T7);
TG = FMA(KP951056516, Tq, KP587785252 * Tr);
Ts = FNMS(KP951056516, Tr, KP587785252 * Tq);
T8 = T4 + T7;
Ti = FNMS(KP250000000, T8, T1);
}
{
E Tc, Tl, Tf, Tm;
T9 = ci[WS(rs, 4)];
{
E Ta, Tb, Td, Te;
Ta = ci[WS(rs, 3)];
Tb = cr[WS(rs, 4)];
Tc = Ta - Tb;
Tl = Ta + Tb;
Td = ci[WS(rs, 2)];
Te = cr[WS(rs, 3)];
Tf = Td - Te;
Tm = Td + Te;
}
Tn = FNMS(KP951056516, Tm, KP587785252 * Tl);
TD = FMA(KP951056516, Tl, KP587785252 * Tm);
Tu = KP559016994 * (Tc - Tf);
Tg = Tc + Tf;
Tt = FNMS(KP250000000, Tg, T9);
}
cr[0] = T1 + T8;
ci[0] = T9 + Tg;
{
E To, Ty, Tw, TA, Tk, Tv;
Tk = Ti - Tj;
To = Tk - Tn;
Ty = Tk + Tn;
Tv = Tt - Tu;
Tw = Ts + Tv;
TA = Tv - Ts;
{
E Th, Tp, Tx, Tz;
Th = W[2];
Tp = W[3];
cr[WS(rs, 2)] = FNMS(Tp, Tw, Th * To);
ci[WS(rs, 2)] = FMA(Th, Tw, Tp * To);
Tx = W[4];
Tz = W[5];
cr[WS(rs, 3)] = FNMS(Tz, TA, Tx * Ty);
ci[WS(rs, 3)] = FMA(Tx, TA, Tz * Ty);
}
}
{
E TE, TK, TI, TM, TC, TH;
TC = Tj + Ti;
TE = TC - TD;
TK = TC + TD;
TH = Tu + Tt;
TI = TG + TH;
TM = TH - TG;
{
E TB, TF, TJ, TL;
TB = W[0];
TF = W[1];
cr[WS(rs, 1)] = FNMS(TF, TI, TB * TE);
ci[WS(rs, 1)] = FMA(TB, TI, TF * TE);
TJ = W[6];
TL = W[7];
cr[WS(rs, 4)] = FNMS(TL, TM, TJ * TK);
ci[WS(rs, 4)] = FMA(TJ, TM, TL * TK);
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 5 },
{ TW_NEXT, 1, 0 }
};
static const hc2hc_desc desc = { 5, "hb_5", twinstr, &GENUS, { 26, 14, 14, 0 } };
void X(codelet_hb_5) (planner *p) {
X(khc2hc_register) (p, hb_5, &desc);
}
#endif