mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-18 10:35:11 +00:00
54e93db207
not reliable yet
641 lines
13 KiB
C
641 lines
13 KiB
C
#include "config.h"
|
|
#include "libbench2/bench.h"
|
|
#include <math.h>
|
|
|
|
#define DG unsigned short
|
|
#define ACC unsigned long
|
|
#define REAL bench_real
|
|
#define BITS_IN_REAL 53 /* mantissa */
|
|
|
|
#define SHFT 16
|
|
#define RADIX 65536L
|
|
#define IRADIX (1.0 / RADIX)
|
|
#define LO(x) ((x) & (RADIX - 1))
|
|
#define HI(x) ((x) >> SHFT)
|
|
#define HI_SIGNED(x) \
|
|
((((x) + (ACC)(RADIX >> 1) * RADIX) >> SHFT) - (RADIX >> 1))
|
|
#define ZEROEXP (-32768)
|
|
|
|
#define LEN 10
|
|
|
|
typedef struct {
|
|
short sign;
|
|
short expt;
|
|
DG d[LEN];
|
|
} N[1];
|
|
|
|
#define EXA a->expt
|
|
#define EXB b->expt
|
|
#define EXC c->expt
|
|
|
|
#define AD a->d
|
|
#define BD b->d
|
|
|
|
#define SGNA a->sign
|
|
#define SGNB b->sign
|
|
|
|
static const N zero = {{ 1, ZEROEXP, {0} }};
|
|
|
|
static void cpy(const N a, N b)
|
|
{
|
|
*b = *a;
|
|
}
|
|
|
|
static void fromreal(REAL x, N a)
|
|
{
|
|
int i, e;
|
|
|
|
cpy(zero, a);
|
|
if (x == 0.0) return;
|
|
|
|
if (x >= 0) { SGNA = 1; }
|
|
else { SGNA = -1; x = -x; }
|
|
|
|
e = 0;
|
|
while (x >= 1.0) { x *= IRADIX; ++e; }
|
|
while (x < IRADIX) { x *= RADIX; --e; }
|
|
EXA = e;
|
|
|
|
for (i = LEN - 1; i >= 0 && x != 0.0; --i) {
|
|
REAL y;
|
|
|
|
x *= RADIX;
|
|
y = (REAL) ((int) x);
|
|
AD[i] = (DG)y;
|
|
x -= y;
|
|
}
|
|
}
|
|
|
|
static void fromshort(int x, N a)
|
|
{
|
|
cpy(zero, a);
|
|
|
|
if (x < 0) { x = -x; SGNA = -1; }
|
|
else { SGNA = 1; }
|
|
EXA = 1;
|
|
AD[LEN - 1] = x;
|
|
}
|
|
|
|
static void pack(DG *d, int e, int s, int l, N a)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = l - 1; i >= 0; --i, --e)
|
|
if (d[i] != 0)
|
|
break;
|
|
|
|
if (i < 0) {
|
|
/* number is zero */
|
|
cpy(zero, a);
|
|
} else {
|
|
EXA = e;
|
|
SGNA = s;
|
|
|
|
if (i >= LEN - 1) {
|
|
for (j = LEN - 1; j >= 0; --i, --j)
|
|
AD[j] = d[i];
|
|
} else {
|
|
for (j = LEN - 1; i >= 0; --i, --j)
|
|
AD[j] = d[i];
|
|
for ( ; j >= 0; --j)
|
|
AD[j] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* compare absolute values */
|
|
static int abscmp(const N a, const N b)
|
|
{
|
|
int i;
|
|
if (EXA > EXB) return 1;
|
|
if (EXA < EXB) return -1;
|
|
for (i = LEN - 1; i >= 0; --i) {
|
|
if (AD[i] > BD[i])
|
|
return 1;
|
|
if (AD[i] < BD[i])
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int eq(const N a, const N b)
|
|
{
|
|
return (SGNA == SGNB) && (abscmp(a, b) == 0);
|
|
}
|
|
|
|
/* add magnitudes, for |a| >= |b| */
|
|
static void addmag0(int s, const N a, const N b, N c)
|
|
{
|
|
int ia, ib;
|
|
ACC r = 0;
|
|
DG d[LEN + 1];
|
|
|
|
for (ia = 0, ib = EXA - EXB; ib < LEN; ++ia, ++ib) {
|
|
r += (ACC)AD[ia] + (ACC)BD[ib];
|
|
d[ia] = LO(r);
|
|
r = HI(r);
|
|
}
|
|
for (; ia < LEN; ++ia) {
|
|
r += (ACC)AD[ia];
|
|
d[ia] = LO(r);
|
|
r = HI(r);
|
|
}
|
|
d[ia] = LO(r);
|
|
pack(d, EXA + 1, s * SGNA, LEN + 1, c);
|
|
}
|
|
|
|
static void addmag(int s, const N a, const N b, N c)
|
|
{
|
|
if (abscmp(a, b) > 0) addmag0(1, a, b, c); else addmag0(s, b, a, c);
|
|
}
|
|
|
|
/* subtract magnitudes, for |a| >= |b| */
|
|
static void submag0(int s, const N a, const N b, N c)
|
|
{
|
|
int ia, ib;
|
|
ACC r = 0;
|
|
DG d[LEN];
|
|
|
|
for (ia = 0, ib = EXA - EXB; ib < LEN; ++ia, ++ib) {
|
|
r += (ACC)AD[ia] - (ACC)BD[ib];
|
|
d[ia] = LO(r);
|
|
r = HI_SIGNED(r);
|
|
}
|
|
for (; ia < LEN; ++ia) {
|
|
r += (ACC)AD[ia];
|
|
d[ia] = LO(r);
|
|
r = HI_SIGNED(r);
|
|
}
|
|
|
|
pack(d, EXA, s * SGNA, LEN, c);
|
|
}
|
|
|
|
static void submag(int s, const N a, const N b, N c)
|
|
{
|
|
if (abscmp(a, b) > 0) submag0(1, a, b, c); else submag0(s, b, a, c);
|
|
}
|
|
|
|
/* c = a + b */
|
|
static void add(const N a, const N b, N c)
|
|
{
|
|
if (SGNA == SGNB) addmag(1, a, b, c); else submag(1, a, b, c);
|
|
}
|
|
|
|
static void sub(const N a, const N b, N c)
|
|
{
|
|
if (SGNA == SGNB) submag(-1, a, b, c); else addmag(-1, a, b, c);
|
|
}
|
|
|
|
static void mul(const N a, const N b, N c)
|
|
{
|
|
DG d[2 * LEN];
|
|
int i, j, k;
|
|
ACC r;
|
|
|
|
for (i = 0; i < LEN; ++i)
|
|
d[2 * i] = d[2 * i + 1] = 0;
|
|
|
|
for (i = 0; i < LEN; ++i) {
|
|
ACC ai = AD[i];
|
|
if (ai) {
|
|
r = 0;
|
|
for (j = 0, k = i; j < LEN; ++j, ++k) {
|
|
r += ai * (ACC)BD[j] + (ACC)d[k];
|
|
d[k] = LO(r);
|
|
r = HI(r);
|
|
}
|
|
d[k] = LO(r);
|
|
}
|
|
}
|
|
|
|
pack(d, EXA + EXB, SGNA * SGNB, 2 * LEN, c);
|
|
}
|
|
|
|
static REAL toreal(const N a)
|
|
{
|
|
REAL h, l, f;
|
|
int i, bits;
|
|
ACC r;
|
|
DG sticky;
|
|
|
|
if (EXA != ZEROEXP) {
|
|
f = IRADIX;
|
|
i = LEN;
|
|
|
|
bits = 0;
|
|
h = (r = AD[--i]) * f; f *= IRADIX;
|
|
for (bits = 0; r > 0; ++bits)
|
|
r >>= 1;
|
|
|
|
/* first digit */
|
|
while (bits + SHFT <= BITS_IN_REAL) {
|
|
h += AD[--i] * f; f *= IRADIX; bits += SHFT;
|
|
}
|
|
|
|
/* guard digit (leave one bit for sticky bit, hence `<' instead
|
|
of `<=') */
|
|
bits = 0; l = 0.0;
|
|
while (bits + SHFT < BITS_IN_REAL) {
|
|
l += AD[--i] * f; f *= IRADIX; bits += SHFT;
|
|
}
|
|
|
|
/* sticky bit */
|
|
sticky = 0;
|
|
while (i > 0)
|
|
sticky |= AD[--i];
|
|
|
|
if (sticky)
|
|
l += (RADIX / 2) * f;
|
|
|
|
h += l;
|
|
|
|
for (i = 0; i < EXA; ++i) h *= (REAL)RADIX;
|
|
for (i = 0; i > EXA; --i) h *= IRADIX;
|
|
if (SGNA == -1) h = -h;
|
|
return h;
|
|
} else {
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
static void neg(N a)
|
|
{
|
|
SGNA = -SGNA;
|
|
}
|
|
|
|
static void inv(const N a, N x)
|
|
{
|
|
N w, z, one, two;
|
|
|
|
fromreal(1.0 / toreal(a), x); /* initial guess */
|
|
fromshort(1, one);
|
|
fromshort(2, two);
|
|
|
|
for (;;) {
|
|
/* Newton */
|
|
mul(a, x, w);
|
|
sub(two, w, z);
|
|
if (eq(one, z)) break;
|
|
mul(x, z, x);
|
|
}
|
|
}
|
|
|
|
|
|
/* 2 pi */
|
|
static const N n2pi = {{
|
|
1, 1,
|
|
{18450, 59017, 1760, 5212, 9779, 4518, 2886, 54545, 18558, 6}
|
|
}};
|
|
|
|
/* 1 / 31! */
|
|
static const N i31fac = {{
|
|
1, -7,
|
|
{28087, 45433, 51357, 24545, 14291, 3954, 57879, 8109, 38716, 41382}
|
|
}};
|
|
|
|
|
|
/* 1 / 32! */
|
|
static const N i32fac = {{
|
|
1, -7,
|
|
{52078, 60811, 3652, 39679, 37310, 47227, 28432, 57597, 13497, 1293}
|
|
}};
|
|
|
|
static void msin(const N a, N b)
|
|
{
|
|
N a2, g, k;
|
|
int i;
|
|
|
|
cpy(i31fac, g);
|
|
cpy(g, b);
|
|
mul(a, a, a2);
|
|
|
|
/* Taylor */
|
|
for (i = 31; i > 1; i -= 2) {
|
|
fromshort(i * (i - 1), k);
|
|
mul(k, g, g);
|
|
mul(a2, b, k);
|
|
sub(g, k, b);
|
|
}
|
|
mul(a, b, b);
|
|
}
|
|
|
|
static void mcos(const N a, N b)
|
|
{
|
|
N a2, g, k;
|
|
int i;
|
|
|
|
cpy(i32fac, g);
|
|
cpy(g, b);
|
|
mul(a, a, a2);
|
|
|
|
/* Taylor */
|
|
for (i = 32; i > 0; i -= 2) {
|
|
fromshort(i * (i - 1), k);
|
|
mul(k, g, g);
|
|
mul(a2, b, k);
|
|
sub(g, k, b);
|
|
}
|
|
}
|
|
|
|
static void by2pi(REAL m, REAL n, N a)
|
|
{
|
|
N b;
|
|
|
|
fromreal(n, b);
|
|
inv(b, a);
|
|
fromreal(m, b);
|
|
mul(a, b, a);
|
|
mul(n2pi, a, a);
|
|
}
|
|
|
|
static void sin2pi(REAL m, REAL n, N a);
|
|
static void cos2pi(REAL m, REAL n, N a)
|
|
{
|
|
N b;
|
|
if (m < 0) cos2pi(-m, n, a);
|
|
else if (m > n * 0.5) cos2pi(n - m, n, a);
|
|
else if (m > n * 0.25) {sin2pi(m - n * 0.25, n, a); neg(a);}
|
|
else if (m > n * 0.125) sin2pi(n * 0.25 - m, n, a);
|
|
else { by2pi(m, n, b); mcos(b, a); }
|
|
}
|
|
|
|
static void sin2pi(REAL m, REAL n, N a)
|
|
{
|
|
N b;
|
|
if (m < 0) {sin2pi(-m, n, a); neg(a);}
|
|
else if (m > n * 0.5) {sin2pi(n - m, n, a); neg(a);}
|
|
else if (m > n * 0.25) {cos2pi(m - n * 0.25, n, a);}
|
|
else if (m > n * 0.125) {cos2pi(n * 0.25 - m, n, a);}
|
|
else {by2pi(m, n, b); msin(b, a);}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
/* FFT stuff */
|
|
|
|
/* (r0 + i i0)(r1 + i i1) */
|
|
static void cmul(N r0, N i0, N r1, N i1, N r2, N i2)
|
|
{
|
|
N s, t, q;
|
|
mul(r0, r1, s);
|
|
mul(i0, i1, t);
|
|
sub(s, t, q);
|
|
mul(r0, i1, s);
|
|
mul(i0, r1, t);
|
|
add(s, t, i2);
|
|
cpy(q, r2);
|
|
}
|
|
|
|
/* (r0 - i i0)(r1 + i i1) */
|
|
static void cmulj(N r0, N i0, N r1, N i1, N r2, N i2)
|
|
{
|
|
N s, t, q;
|
|
mul(r0, r1, s);
|
|
mul(i0, i1, t);
|
|
add(s, t, q);
|
|
mul(r0, i1, s);
|
|
mul(i0, r1, t);
|
|
sub(s, t, i2);
|
|
cpy(q, r2);
|
|
}
|
|
|
|
static void mcexp(int m, int n, N r, N i)
|
|
{
|
|
static int cached_n = -1;
|
|
static N w[64][2];
|
|
int k, j;
|
|
if (n != cached_n) {
|
|
for (j = 1, k = 0; j < n; j += j, ++k) {
|
|
cos2pi(j, n, w[k][0]);
|
|
sin2pi(j, n, w[k][1]);
|
|
}
|
|
cached_n = n;
|
|
}
|
|
|
|
fromshort(1, r);
|
|
fromshort(0, i);
|
|
if (m > 0) {
|
|
for (k = 0; m; ++k, m >>= 1)
|
|
if (m & 1)
|
|
cmul(w[k][0], w[k][1], r, i, r, i);
|
|
} else {
|
|
m = -m;
|
|
for (k = 0; m; ++k, m >>= 1)
|
|
if (m & 1)
|
|
cmulj(w[k][0], w[k][1], r, i, r, i);
|
|
}
|
|
}
|
|
|
|
static void bitrev(int n, N *a)
|
|
{
|
|
int i, j, m;
|
|
for (i = j = 0; i < n - 1; ++i) {
|
|
if (i < j) {
|
|
N t;
|
|
cpy(a[2*i], t); cpy(a[2*j], a[2*i]); cpy(t, a[2*j]);
|
|
cpy(a[2*i+1], t); cpy(a[2*j+1], a[2*i+1]); cpy(t, a[2*j+1]);
|
|
}
|
|
|
|
/* bit reversed counter */
|
|
m = n; do { m >>= 1; j ^= m; } while (!(j & m));
|
|
}
|
|
}
|
|
|
|
static void fft0(int n, N *a, int sign)
|
|
{
|
|
int i, j, k;
|
|
|
|
bitrev(n, a);
|
|
for (i = 1; i < n; i = 2 * i) {
|
|
for (j = 0; j < i; ++j) {
|
|
N wr, wi;
|
|
mcexp(sign * (int)j, 2 * i, wr, wi);
|
|
for (k = j; k < n; k += 2 * i) {
|
|
N *a0 = a + 2 * k;
|
|
N *a1 = a0 + 2 * i;
|
|
N r0, i0, r1, i1, t0, t1, xr, xi;
|
|
cpy(a0[0], r0); cpy(a0[1], i0);
|
|
cpy(a1[0], r1); cpy(a1[1], i1);
|
|
mul(r1, wr, t0); mul(i1, wi, t1); sub(t0, t1, xr);
|
|
mul(r1, wi, t0); mul(i1, wr, t1); add(t0, t1, xi);
|
|
add(r0, xr, a0[0]); add(i0, xi, a0[1]);
|
|
sub(r0, xr, a1[0]); sub(i0, xi, a1[1]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* a[2*k]+i*a[2*k+1] = exp(2*pi*i*k^2/(2*n)) */
|
|
static void bluestein_sequence(int n, N *a)
|
|
{
|
|
int k, ksq, n2 = 2 * n;
|
|
|
|
ksq = 1; /* (-1)^2 */
|
|
for (k = 0; k < n; ++k) {
|
|
/* careful with overflow */
|
|
ksq = ksq + 2*k - 1; while (ksq > n2) ksq -= n2;
|
|
mcexp(ksq, n2, a[2*k], a[2*k+1]);
|
|
}
|
|
}
|
|
|
|
static int pow2_atleast(int x)
|
|
{
|
|
int h;
|
|
for (h = 1; h < x; h = 2 * h)
|
|
;
|
|
return h;
|
|
}
|
|
|
|
static N *cached_bluestein_w = 0;
|
|
static N *cached_bluestein_y = 0;
|
|
static int cached_bluestein_n = -1;
|
|
|
|
static void bluestein(int n, N *a)
|
|
{
|
|
int nb = pow2_atleast(2 * n);
|
|
N *b = (N *)bench_malloc(2 * nb * sizeof(N));
|
|
N *w = cached_bluestein_w;
|
|
N *y = cached_bluestein_y;
|
|
N nbinv;
|
|
int i;
|
|
|
|
fromreal(1.0 / nb, nbinv); /* exact because nb = 2^k */
|
|
|
|
if (cached_bluestein_n != n) {
|
|
if (w) bench_free(w);
|
|
if (y) bench_free(y);
|
|
w = (N *)bench_malloc(2 * n * sizeof(N));
|
|
y = (N *)bench_malloc(2 * nb * sizeof(N));
|
|
cached_bluestein_n = n;
|
|
cached_bluestein_w = w;
|
|
cached_bluestein_y = y;
|
|
|
|
bluestein_sequence(n, w);
|
|
for (i = 0; i < 2*nb; ++i) cpy(zero, y[i]);
|
|
|
|
for (i = 0; i < n; ++i) {
|
|
cpy(w[2*i], y[2*i]);
|
|
cpy(w[2*i+1], y[2*i+1]);
|
|
}
|
|
for (i = 1; i < n; ++i) {
|
|
cpy(w[2*i], y[2*(nb-i)]);
|
|
cpy(w[2*i+1], y[2*(nb-i)+1]);
|
|
}
|
|
|
|
fft0(nb, y, -1);
|
|
}
|
|
|
|
for (i = 0; i < 2*nb; ++i) cpy(zero, b[i]);
|
|
|
|
for (i = 0; i < n; ++i)
|
|
cmulj(w[2*i], w[2*i+1], a[2*i], a[2*i+1], b[2*i], b[2*i+1]);
|
|
|
|
/* scaled convolution b * y */
|
|
fft0(nb, b, -1);
|
|
|
|
for (i = 0; i < nb; ++i)
|
|
cmul(b[2*i], b[2*i+1], y[2*i], y[2*i+1], b[2*i], b[2*i+1]);
|
|
fft0(nb, b, 1);
|
|
|
|
for (i = 0; i < n; ++i) {
|
|
cmulj(w[2*i], w[2*i+1], b[2*i], b[2*i+1], a[2*i], a[2*i+1]);
|
|
mul(nbinv, a[2*i], a[2*i]);
|
|
mul(nbinv, a[2*i+1], a[2*i+1]);
|
|
}
|
|
|
|
bench_free(b);
|
|
}
|
|
|
|
static void swapri(int n, N *a)
|
|
{
|
|
int i;
|
|
for (i = 0; i < n; ++i) {
|
|
N t;
|
|
cpy(a[2 * i], t);
|
|
cpy(a[2 * i + 1], a[2 * i]);
|
|
cpy(t, a[2 * i + 1]);
|
|
}
|
|
}
|
|
|
|
static void fft1(int n, N *a, int sign)
|
|
{
|
|
if (power_of_two(n)) {
|
|
fft0(n, a, sign);
|
|
} else {
|
|
if (sign == 1) swapri(n, a);
|
|
bluestein(n, a);
|
|
if (sign == 1) swapri(n, a);
|
|
}
|
|
}
|
|
|
|
static void fromrealv(int n, bench_complex *a, N *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < n; ++i) {
|
|
fromreal(c_re(a[i]), b[2 * i]);
|
|
fromreal(c_im(a[i]), b[2 * i + 1]);
|
|
}
|
|
}
|
|
|
|
static void compare(int n, N *a, N *b, double *err)
|
|
{
|
|
int i;
|
|
double e1, e2, einf;
|
|
double n1, n2, ninf;
|
|
|
|
e1 = e2 = einf = 0.0;
|
|
n1 = n2 = ninf = 0.0;
|
|
|
|
# define DO(x1, x2, xinf, var) { \
|
|
double d = var; \
|
|
if (d < 0) d = -d; \
|
|
x1 += d; x2 += d * d; if (d > xinf) xinf = d; \
|
|
}
|
|
|
|
for (i = 0; i < 2 * n; ++i) {
|
|
N dd;
|
|
sub(a[i], b[i], dd);
|
|
DO(n1, n2, ninf, toreal(a[i]));
|
|
DO(e1, e2, einf, toreal(dd));
|
|
}
|
|
|
|
# undef DO
|
|
err[0] = e1 / n1;
|
|
err[1] = sqrt(e2 / n2);
|
|
err[2] = einf / ninf;
|
|
}
|
|
|
|
void fftaccuracy(int n, bench_complex *a, bench_complex *ffta,
|
|
int sign, double err[6])
|
|
{
|
|
N *b = (N *)bench_malloc(2 * n * sizeof(N));
|
|
N *fftb = (N *)bench_malloc(2 * n * sizeof(N));
|
|
N mn, ninv;
|
|
int i;
|
|
|
|
fromreal(n, mn); inv(mn, ninv);
|
|
|
|
/* forward error */
|
|
fromrealv(n, a, b); fromrealv(n, ffta, fftb);
|
|
fft1(n, b, sign);
|
|
compare(n, b, fftb, err);
|
|
|
|
/* backward error */
|
|
fromrealv(n, a, b); fromrealv(n, ffta, fftb);
|
|
for (i = 0; i < 2 * n; ++i) mul(fftb[i], ninv, fftb[i]);
|
|
fft1(n, fftb, -sign);
|
|
compare(n, b, fftb, err + 3);
|
|
|
|
bench_free(fftb);
|
|
bench_free(b);
|
|
}
|
|
|
|
void fftaccuracy_done(void)
|
|
{
|
|
if (cached_bluestein_w) bench_free(cached_bluestein_w);
|
|
if (cached_bluestein_y) bench_free(cached_bluestein_y);
|
|
cached_bluestein_w = 0;
|
|
cached_bluestein_y = 0;
|
|
cached_bluestein_n = -1;
|
|
}
|