mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-04 18:27:25 +00:00
54e93db207
not reliable yet
440 lines
14 KiB
C
440 lines
14 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/* This file was automatically generated --- DO NOT EDIT */
|
|
/* Generated on Tue Sep 14 10:45:45 EDT 2021 */
|
|
|
|
#include "dft/codelet-dft.h"
|
|
|
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
|
|
|
/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3fv_16 -include dft/simd/t3f.h */
|
|
|
|
/*
|
|
* This function contains 98 FP additions, 86 FP multiplications,
|
|
* (or, 64 additions, 52 multiplications, 34 fused multiply/add),
|
|
* 51 stack variables, 3 constants, and 32 memory accesses
|
|
*/
|
|
#include "dft/simd/t3f.h"
|
|
|
|
static void t3fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
|
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
|
DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
|
|
{
|
|
INT m;
|
|
R *x;
|
|
x = ri;
|
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) {
|
|
V T2, T8, T9, Tx, Tu, TL, T3, T4, TO, TU, Tc, Tm, Ty, TE, Tp;
|
|
T2 = LDW(&(W[0]));
|
|
T8 = LDW(&(W[TWVL * 2]));
|
|
T9 = VZMUL(T2, T8);
|
|
Tx = VZMULJ(T2, T8);
|
|
Tu = LDW(&(W[TWVL * 6]));
|
|
TL = VZMULJ(T2, Tu);
|
|
T3 = LDW(&(W[TWVL * 4]));
|
|
T4 = VZMULJ(T2, T3);
|
|
TO = VZMULJ(T8, T3);
|
|
TU = VZMUL(T2, T3);
|
|
Tc = VZMUL(T8, T3);
|
|
Tm = VZMULJ(T9, T3);
|
|
Ty = VZMULJ(Tx, T3);
|
|
TE = VZMUL(Tx, T3);
|
|
Tp = VZMUL(T9, T3);
|
|
{
|
|
V T7, T1b, Tf, T1o, TR, TX, T1e, T1p, Tl, Ts, Tt, T1i, T1r, TB, TH;
|
|
V TI, T1l, T1s, T1, T6, T5;
|
|
T1 = LD(&(x[0]), ms, &(x[0]));
|
|
T5 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
|
T6 = VZMULJ(T4, T5);
|
|
T7 = VADD(T1, T6);
|
|
T1b = VSUB(T1, T6);
|
|
{
|
|
V Tb, Te, Ta, Td;
|
|
Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
|
Tb = VZMULJ(T9, Ta);
|
|
Td = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
|
|
Te = VZMULJ(Tc, Td);
|
|
Tf = VADD(Tb, Te);
|
|
T1o = VSUB(Tb, Te);
|
|
}
|
|
{
|
|
V TN, TW, TQ, TT, T1c, T1d;
|
|
{
|
|
V TM, TV, TP, TS;
|
|
TM = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
|
|
TN = VZMULJ(TL, TM);
|
|
TV = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
|
TW = VZMULJ(TU, TV);
|
|
TP = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
|
TQ = VZMULJ(TO, TP);
|
|
TS = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
|
TT = VZMULJ(Tx, TS);
|
|
}
|
|
TR = VADD(TN, TQ);
|
|
TX = VADD(TT, TW);
|
|
T1c = VSUB(TT, TW);
|
|
T1d = VSUB(TN, TQ);
|
|
T1e = VADD(T1c, T1d);
|
|
T1p = VSUB(T1d, T1c);
|
|
}
|
|
{
|
|
V Ti, Tr, Tk, To, T1g, T1h;
|
|
{
|
|
V Th, Tq, Tj, Tn;
|
|
Th = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
|
Ti = VZMULJ(T2, Th);
|
|
Tq = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
|
|
Tr = VZMULJ(Tp, Tq);
|
|
Tj = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
|
Tk = VZMULJ(T3, Tj);
|
|
Tn = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
|
To = VZMULJ(Tm, Tn);
|
|
}
|
|
Tl = VADD(Ti, Tk);
|
|
Ts = VADD(To, Tr);
|
|
Tt = VSUB(Tl, Ts);
|
|
T1g = VSUB(Ti, Tk);
|
|
T1h = VSUB(To, Tr);
|
|
T1i = VFNMS(LDK(KP414213562), T1h, T1g);
|
|
T1r = VFMA(LDK(KP414213562), T1g, T1h);
|
|
}
|
|
{
|
|
V Tw, TG, TA, TD, T1j, T1k;
|
|
{
|
|
V Tv, TF, Tz, TC;
|
|
Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
|
|
Tw = VZMULJ(Tu, Tv);
|
|
TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
|
TG = VZMULJ(TE, TF);
|
|
Tz = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
|
TA = VZMULJ(Ty, Tz);
|
|
TC = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
|
TD = VZMULJ(T8, TC);
|
|
}
|
|
TB = VADD(Tw, TA);
|
|
TH = VADD(TD, TG);
|
|
TI = VSUB(TB, TH);
|
|
T1j = VSUB(Tw, TA);
|
|
T1k = VSUB(TG, TD);
|
|
T1l = VFNMS(LDK(KP414213562), T1k, T1j);
|
|
T1s = VFMA(LDK(KP414213562), T1j, T1k);
|
|
}
|
|
{
|
|
V TK, T11, T10, T12;
|
|
{
|
|
V Tg, TJ, TY, TZ;
|
|
Tg = VSUB(T7, Tf);
|
|
TJ = VADD(Tt, TI);
|
|
TK = VFNMS(LDK(KP707106781), TJ, Tg);
|
|
T11 = VFMA(LDK(KP707106781), TJ, Tg);
|
|
TY = VSUB(TR, TX);
|
|
TZ = VSUB(TI, Tt);
|
|
T10 = VFNMS(LDK(KP707106781), TZ, TY);
|
|
T12 = VFMA(LDK(KP707106781), TZ, TY);
|
|
}
|
|
ST(&(x[WS(rs, 6)]), VFNMSI(T10, TK), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 2)]), VFMAI(T12, T11), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 10)]), VFMAI(T10, TK), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 14)]), VFNMSI(T12, T11), ms, &(x[0]));
|
|
}
|
|
{
|
|
V T1z, T1D, T1C, T1E;
|
|
{
|
|
V T1x, T1y, T1A, T1B;
|
|
T1x = VFNMS(LDK(KP707106781), T1e, T1b);
|
|
T1y = VADD(T1r, T1s);
|
|
T1z = VFNMS(LDK(KP923879532), T1y, T1x);
|
|
T1D = VFMA(LDK(KP923879532), T1y, T1x);
|
|
T1A = VFMA(LDK(KP707106781), T1p, T1o);
|
|
T1B = VSUB(T1l, T1i);
|
|
T1C = VFNMS(LDK(KP923879532), T1B, T1A);
|
|
T1E = VFMA(LDK(KP923879532), T1B, T1A);
|
|
}
|
|
ST(&(x[WS(rs, 5)]), VFNMSI(T1C, T1z), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 13)]), VFNMSI(T1E, T1D), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 11)]), VFMAI(T1C, T1z), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 3)]), VFMAI(T1E, T1D), ms, &(x[WS(rs, 1)]));
|
|
}
|
|
{
|
|
V T15, T19, T18, T1a;
|
|
{
|
|
V T13, T14, T16, T17;
|
|
T13 = VADD(T7, Tf);
|
|
T14 = VADD(TX, TR);
|
|
T15 = VADD(T13, T14);
|
|
T19 = VSUB(T13, T14);
|
|
T16 = VADD(Tl, Ts);
|
|
T17 = VADD(TB, TH);
|
|
T18 = VADD(T16, T17);
|
|
T1a = VSUB(T17, T16);
|
|
}
|
|
ST(&(x[WS(rs, 8)]), VSUB(T15, T18), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 4)]), VFMAI(T1a, T19), ms, &(x[0]));
|
|
ST(&(x[0]), VADD(T15, T18), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 12)]), VFNMSI(T1a, T19), ms, &(x[0]));
|
|
}
|
|
{
|
|
V T1n, T1v, T1u, T1w;
|
|
{
|
|
V T1f, T1m, T1q, T1t;
|
|
T1f = VFMA(LDK(KP707106781), T1e, T1b);
|
|
T1m = VADD(T1i, T1l);
|
|
T1n = VFNMS(LDK(KP923879532), T1m, T1f);
|
|
T1v = VFMA(LDK(KP923879532), T1m, T1f);
|
|
T1q = VFNMS(LDK(KP707106781), T1p, T1o);
|
|
T1t = VSUB(T1r, T1s);
|
|
T1u = VFNMS(LDK(KP923879532), T1t, T1q);
|
|
T1w = VFMA(LDK(KP923879532), T1t, T1q);
|
|
}
|
|
ST(&(x[WS(rs, 9)]), VFNMSI(T1u, T1n), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 15)]), VFMAI(T1w, T1v), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 7)]), VFMAI(T1u, T1n), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 1)]), VFNMSI(T1w, T1v), ms, &(x[WS(rs, 1)]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(0, 1),
|
|
VTW(0, 3),
|
|
VTW(0, 9),
|
|
VTW(0, 15),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 16, XSIMD_STRING("t3fv_16"), twinstr, &GENUS, { 64, 52, 34, 0 }, 0, 0, 0 };
|
|
|
|
void XSIMD(codelet_t3fv_16) (planner *p) {
|
|
X(kdft_dit_register) (p, t3fv_16, &desc);
|
|
}
|
|
#else
|
|
|
|
/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3fv_16 -include dft/simd/t3f.h */
|
|
|
|
/*
|
|
* This function contains 98 FP additions, 64 FP multiplications,
|
|
* (or, 94 additions, 60 multiplications, 4 fused multiply/add),
|
|
* 51 stack variables, 3 constants, and 32 memory accesses
|
|
*/
|
|
#include "dft/simd/t3f.h"
|
|
|
|
static void t3fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
|
DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
|
|
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
|
{
|
|
INT m;
|
|
R *x;
|
|
x = ri;
|
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) {
|
|
V T4, T5, T6, To, T1, Ty, T7, T8, TO, TV, Te, Tp, TB, TH, Ts;
|
|
T4 = LDW(&(W[0]));
|
|
T5 = LDW(&(W[TWVL * 2]));
|
|
T6 = VZMULJ(T4, T5);
|
|
To = VZMUL(T4, T5);
|
|
T1 = LDW(&(W[TWVL * 6]));
|
|
Ty = VZMULJ(T4, T1);
|
|
T7 = LDW(&(W[TWVL * 4]));
|
|
T8 = VZMULJ(T6, T7);
|
|
TO = VZMUL(T5, T7);
|
|
TV = VZMULJ(T4, T7);
|
|
Te = VZMUL(T6, T7);
|
|
Tp = VZMULJ(To, T7);
|
|
TB = VZMULJ(T5, T7);
|
|
TH = VZMUL(T4, T7);
|
|
Ts = VZMUL(To, T7);
|
|
{
|
|
V TY, T1f, TR, T1g, T1q, T1r, TL, TZ, T1l, T1m, T1n, Ti, T12, T1i, T1j;
|
|
V T1k, Tw, T11, TU, TX, TW;
|
|
TU = LD(&(x[0]), ms, &(x[0]));
|
|
TW = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
|
TX = VZMULJ(TV, TW);
|
|
TY = VSUB(TU, TX);
|
|
T1f = VADD(TU, TX);
|
|
{
|
|
V TN, TQ, TM, TP;
|
|
TM = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
|
TN = VZMULJ(To, TM);
|
|
TP = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
|
|
TQ = VZMULJ(TO, TP);
|
|
TR = VSUB(TN, TQ);
|
|
T1g = VADD(TN, TQ);
|
|
}
|
|
{
|
|
V TA, TJ, TD, TG, TE, TK;
|
|
{
|
|
V Tz, TI, TC, TF;
|
|
Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
|
|
TA = VZMULJ(Ty, Tz);
|
|
TI = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
|
TJ = VZMULJ(TH, TI);
|
|
TC = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
|
TD = VZMULJ(TB, TC);
|
|
TF = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
|
TG = VZMULJ(T6, TF);
|
|
}
|
|
T1q = VADD(TA, TD);
|
|
T1r = VADD(TG, TJ);
|
|
TE = VSUB(TA, TD);
|
|
TK = VSUB(TG, TJ);
|
|
TL = VMUL(LDK(KP707106781), VSUB(TE, TK));
|
|
TZ = VMUL(LDK(KP707106781), VADD(TK, TE));
|
|
}
|
|
{
|
|
V T3, Tg, Ta, Td, Tb, Th;
|
|
{
|
|
V T2, Tf, T9, Tc;
|
|
T2 = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
|
|
T3 = VZMULJ(T1, T2);
|
|
Tf = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
|
Tg = VZMULJ(Te, Tf);
|
|
T9 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
|
Ta = VZMULJ(T8, T9);
|
|
Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
|
Td = VZMULJ(T5, Tc);
|
|
}
|
|
T1l = VADD(T3, Ta);
|
|
T1m = VADD(Td, Tg);
|
|
T1n = VSUB(T1l, T1m);
|
|
Tb = VSUB(T3, Ta);
|
|
Th = VSUB(Td, Tg);
|
|
Ti = VFNMS(LDK(KP923879532), Th, VMUL(LDK(KP382683432), Tb));
|
|
T12 = VFMA(LDK(KP923879532), Tb, VMUL(LDK(KP382683432), Th));
|
|
}
|
|
{
|
|
V Tk, Tu, Tm, Tr, Tn, Tv;
|
|
{
|
|
V Tj, Tt, Tl, Tq;
|
|
Tj = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
|
Tk = VZMULJ(T4, Tj);
|
|
Tt = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
|
|
Tu = VZMULJ(Ts, Tt);
|
|
Tl = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
|
Tm = VZMULJ(T7, Tl);
|
|
Tq = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
|
Tr = VZMULJ(Tp, Tq);
|
|
}
|
|
T1i = VADD(Tk, Tm);
|
|
T1j = VADD(Tr, Tu);
|
|
T1k = VSUB(T1i, T1j);
|
|
Tn = VSUB(Tk, Tm);
|
|
Tv = VSUB(Tr, Tu);
|
|
Tw = VFMA(LDK(KP382683432), Tn, VMUL(LDK(KP923879532), Tv));
|
|
T11 = VFNMS(LDK(KP382683432), Tv, VMUL(LDK(KP923879532), Tn));
|
|
}
|
|
{
|
|
V T1p, T1v, T1u, T1w;
|
|
{
|
|
V T1h, T1o, T1s, T1t;
|
|
T1h = VSUB(T1f, T1g);
|
|
T1o = VMUL(LDK(KP707106781), VADD(T1k, T1n));
|
|
T1p = VADD(T1h, T1o);
|
|
T1v = VSUB(T1h, T1o);
|
|
T1s = VSUB(T1q, T1r);
|
|
T1t = VMUL(LDK(KP707106781), VSUB(T1n, T1k));
|
|
T1u = VBYI(VADD(T1s, T1t));
|
|
T1w = VBYI(VSUB(T1t, T1s));
|
|
}
|
|
ST(&(x[WS(rs, 14)]), VSUB(T1p, T1u), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 6)]), VADD(T1v, T1w), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 2)]), VADD(T1p, T1u), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 10)]), VSUB(T1v, T1w), ms, &(x[0]));
|
|
}
|
|
{
|
|
V T1z, T1D, T1C, T1E;
|
|
{
|
|
V T1x, T1y, T1A, T1B;
|
|
T1x = VADD(T1f, T1g);
|
|
T1y = VADD(T1r, T1q);
|
|
T1z = VADD(T1x, T1y);
|
|
T1D = VSUB(T1x, T1y);
|
|
T1A = VADD(T1i, T1j);
|
|
T1B = VADD(T1l, T1m);
|
|
T1C = VADD(T1A, T1B);
|
|
T1E = VBYI(VSUB(T1B, T1A));
|
|
}
|
|
ST(&(x[WS(rs, 8)]), VSUB(T1z, T1C), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 4)]), VADD(T1D, T1E), ms, &(x[0]));
|
|
ST(&(x[0]), VADD(T1z, T1C), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 12)]), VSUB(T1D, T1E), ms, &(x[0]));
|
|
}
|
|
{
|
|
V TT, T15, T14, T16;
|
|
{
|
|
V Tx, TS, T10, T13;
|
|
Tx = VSUB(Ti, Tw);
|
|
TS = VSUB(TL, TR);
|
|
TT = VBYI(VSUB(Tx, TS));
|
|
T15 = VBYI(VADD(TS, Tx));
|
|
T10 = VADD(TY, TZ);
|
|
T13 = VADD(T11, T12);
|
|
T14 = VSUB(T10, T13);
|
|
T16 = VADD(T10, T13);
|
|
}
|
|
ST(&(x[WS(rs, 7)]), VADD(TT, T14), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 15)]), VSUB(T16, T15), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 9)]), VSUB(T14, TT), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 1)]), VADD(T15, T16), ms, &(x[WS(rs, 1)]));
|
|
}
|
|
{
|
|
V T19, T1d, T1c, T1e;
|
|
{
|
|
V T17, T18, T1a, T1b;
|
|
T17 = VSUB(TY, TZ);
|
|
T18 = VADD(Tw, Ti);
|
|
T19 = VADD(T17, T18);
|
|
T1d = VSUB(T17, T18);
|
|
T1a = VADD(TR, TL);
|
|
T1b = VSUB(T12, T11);
|
|
T1c = VBYI(VADD(T1a, T1b));
|
|
T1e = VBYI(VSUB(T1b, T1a));
|
|
}
|
|
ST(&(x[WS(rs, 13)]), VSUB(T19, T1c), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 5)]), VADD(T1d, T1e), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 3)]), VADD(T19, T1c), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 11)]), VSUB(T1d, T1e), ms, &(x[WS(rs, 1)]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(0, 1),
|
|
VTW(0, 3),
|
|
VTW(0, 9),
|
|
VTW(0, 15),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 16, XSIMD_STRING("t3fv_16"), twinstr, &GENUS, { 94, 60, 4, 0 }, 0, 0, 0 };
|
|
|
|
void XSIMD(codelet_t3fv_16) (planner *p) {
|
|
X(kdft_dit_register) (p, t3fv_16, &desc);
|
|
}
|
|
#endif
|