mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-04 18:27:25 +00:00
54e93db207
not reliable yet
290 lines
9.6 KiB
C
290 lines
9.6 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/* This file was automatically generated --- DO NOT EDIT */
|
|
/* Generated on Tue Sep 14 10:45:57 EDT 2021 */
|
|
|
|
#include "dft/codelet-dft.h"
|
|
|
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
|
|
|
/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3bv_10 -include dft/simd/t3b.h -sign 1 */
|
|
|
|
/*
|
|
* This function contains 57 FP additions, 52 FP multiplications,
|
|
* (or, 39 additions, 34 multiplications, 18 fused multiply/add),
|
|
* 41 stack variables, 4 constants, and 20 memory accesses
|
|
*/
|
|
#include "dft/simd/t3b.h"
|
|
|
|
static void t3bv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
|
DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
|
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
|
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
|
{
|
|
INT m;
|
|
R *x;
|
|
x = ii;
|
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) {
|
|
V T2, T3, T4, Ta, T5, T6, Tt, Td, Th;
|
|
T2 = LDW(&(W[0]));
|
|
T3 = LDW(&(W[TWVL * 2]));
|
|
T4 = VZMUL(T2, T3);
|
|
Ta = VZMULJ(T2, T3);
|
|
T5 = LDW(&(W[TWVL * 4]));
|
|
T6 = VZMULJ(T4, T5);
|
|
Tt = VZMULJ(T3, T5);
|
|
Td = VZMULJ(Ta, T5);
|
|
Th = VZMULJ(T2, T5);
|
|
{
|
|
V T9, TJ, Ts, Ty, Tz, TN, TO, TP, Tg, Tm, Tn, TK, TL, TM, T1;
|
|
V T8, T7;
|
|
T1 = LD(&(x[0]), ms, &(x[0]));
|
|
T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
|
T8 = VZMUL(T6, T7);
|
|
T9 = VSUB(T1, T8);
|
|
TJ = VADD(T1, T8);
|
|
{
|
|
V Tp, Tx, Tr, Tv;
|
|
{
|
|
V To, Tw, Tq, Tu;
|
|
To = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
|
Tp = VZMUL(T4, To);
|
|
Tw = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
|
Tx = VZMUL(T2, Tw);
|
|
Tq = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
|
Tr = VZMUL(T5, Tq);
|
|
Tu = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
|
Tv = VZMUL(Tt, Tu);
|
|
}
|
|
Ts = VSUB(Tp, Tr);
|
|
Ty = VSUB(Tv, Tx);
|
|
Tz = VADD(Ts, Ty);
|
|
TN = VADD(Tp, Tr);
|
|
TO = VADD(Tv, Tx);
|
|
TP = VADD(TN, TO);
|
|
}
|
|
{
|
|
V Tc, Tl, Tf, Tj;
|
|
{
|
|
V Tb, Tk, Te, Ti;
|
|
Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
|
Tc = VZMUL(Ta, Tb);
|
|
Tk = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
|
Tl = VZMUL(T3, Tk);
|
|
Te = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
|
Tf = VZMUL(Td, Te);
|
|
Ti = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
|
Tj = VZMUL(Th, Ti);
|
|
}
|
|
Tg = VSUB(Tc, Tf);
|
|
Tm = VSUB(Tj, Tl);
|
|
Tn = VADD(Tg, Tm);
|
|
TK = VADD(Tc, Tf);
|
|
TL = VADD(Tj, Tl);
|
|
TM = VADD(TK, TL);
|
|
}
|
|
{
|
|
V TC, TA, TB, TG, TI, TE, TF, TH, TD;
|
|
TC = VSUB(Tn, Tz);
|
|
TA = VADD(Tn, Tz);
|
|
TB = VFNMS(LDK(KP250000000), TA, T9);
|
|
TE = VSUB(Tg, Tm);
|
|
TF = VSUB(Ts, Ty);
|
|
TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TF, TE));
|
|
TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TF));
|
|
ST(&(x[WS(rs, 5)]), VADD(T9, TA), ms, &(x[WS(rs, 1)]));
|
|
TH = VFNMS(LDK(KP559016994), TC, TB);
|
|
ST(&(x[WS(rs, 3)]), VFMAI(TI, TH), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 7)]), VFNMSI(TI, TH), ms, &(x[WS(rs, 1)]));
|
|
TD = VFMA(LDK(KP559016994), TC, TB);
|
|
ST(&(x[WS(rs, 1)]), VFMAI(TG, TD), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 9)]), VFNMSI(TG, TD), ms, &(x[WS(rs, 1)]));
|
|
}
|
|
{
|
|
V TS, TQ, TR, TW, TY, TU, TV, TX, TT;
|
|
TS = VSUB(TM, TP);
|
|
TQ = VADD(TM, TP);
|
|
TR = VFNMS(LDK(KP250000000), TQ, TJ);
|
|
TU = VSUB(TN, TO);
|
|
TV = VSUB(TK, TL);
|
|
TW = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TV, TU));
|
|
TY = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TU, TV));
|
|
ST(&(x[0]), VADD(TJ, TQ), ms, &(x[0]));
|
|
TX = VFMA(LDK(KP559016994), TS, TR);
|
|
ST(&(x[WS(rs, 4)]), VFNMSI(TY, TX), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 6)]), VFMAI(TY, TX), ms, &(x[0]));
|
|
TT = VFNMS(LDK(KP559016994), TS, TR);
|
|
ST(&(x[WS(rs, 2)]), VFNMSI(TW, TT), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 8)]), VFMAI(TW, TT), ms, &(x[0]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(0, 1),
|
|
VTW(0, 3),
|
|
VTW(0, 9),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 10, XSIMD_STRING("t3bv_10"), twinstr, &GENUS, { 39, 34, 18, 0 }, 0, 0, 0 };
|
|
|
|
void XSIMD(codelet_t3bv_10) (planner *p) {
|
|
X(kdft_dit_register) (p, t3bv_10, &desc);
|
|
}
|
|
#else
|
|
|
|
/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3bv_10 -include dft/simd/t3b.h -sign 1 */
|
|
|
|
/*
|
|
* This function contains 57 FP additions, 42 FP multiplications,
|
|
* (or, 51 additions, 36 multiplications, 6 fused multiply/add),
|
|
* 41 stack variables, 4 constants, and 20 memory accesses
|
|
*/
|
|
#include "dft/simd/t3b.h"
|
|
|
|
static void t3bv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
|
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
|
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
|
DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
|
{
|
|
INT m;
|
|
R *x;
|
|
x = ii;
|
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) {
|
|
V T1, T2, T3, Ti, T6, T7, TA, Tb, To;
|
|
T1 = LDW(&(W[0]));
|
|
T2 = LDW(&(W[TWVL * 2]));
|
|
T3 = VZMULJ(T1, T2);
|
|
Ti = VZMUL(T1, T2);
|
|
T6 = LDW(&(W[TWVL * 4]));
|
|
T7 = VZMULJ(T3, T6);
|
|
TA = VZMULJ(Ti, T6);
|
|
Tb = VZMULJ(T1, T6);
|
|
To = VZMULJ(T2, T6);
|
|
{
|
|
V TD, TQ, Tn, Tt, Tx, TM, TN, TS, Ta, Tg, Tw, TJ, TK, TR, Tz;
|
|
V TC, TB;
|
|
Tz = LD(&(x[0]), ms, &(x[0]));
|
|
TB = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
|
TC = VZMUL(TA, TB);
|
|
TD = VSUB(Tz, TC);
|
|
TQ = VADD(Tz, TC);
|
|
{
|
|
V Tk, Ts, Tm, Tq;
|
|
{
|
|
V Tj, Tr, Tl, Tp;
|
|
Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
|
Tk = VZMUL(Ti, Tj);
|
|
Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
|
Ts = VZMUL(T1, Tr);
|
|
Tl = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
|
Tm = VZMUL(T6, Tl);
|
|
Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
|
Tq = VZMUL(To, Tp);
|
|
}
|
|
Tn = VSUB(Tk, Tm);
|
|
Tt = VSUB(Tq, Ts);
|
|
Tx = VADD(Tn, Tt);
|
|
TM = VADD(Tk, Tm);
|
|
TN = VADD(Tq, Ts);
|
|
TS = VADD(TM, TN);
|
|
}
|
|
{
|
|
V T5, Tf, T9, Td;
|
|
{
|
|
V T4, Te, T8, Tc;
|
|
T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
|
T5 = VZMUL(T3, T4);
|
|
Te = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
|
Tf = VZMUL(T2, Te);
|
|
T8 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
|
T9 = VZMUL(T7, T8);
|
|
Tc = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
|
Td = VZMUL(Tb, Tc);
|
|
}
|
|
Ta = VSUB(T5, T9);
|
|
Tg = VSUB(Td, Tf);
|
|
Tw = VADD(Ta, Tg);
|
|
TJ = VADD(T5, T9);
|
|
TK = VADD(Td, Tf);
|
|
TR = VADD(TJ, TK);
|
|
}
|
|
{
|
|
V Ty, TE, TF, Tv, TI, Th, Tu, TH, TG;
|
|
Ty = VMUL(LDK(KP559016994), VSUB(Tw, Tx));
|
|
TE = VADD(Tw, Tx);
|
|
TF = VFNMS(LDK(KP250000000), TE, TD);
|
|
Th = VSUB(Ta, Tg);
|
|
Tu = VSUB(Tn, Tt);
|
|
Tv = VBYI(VFMA(LDK(KP951056516), Th, VMUL(LDK(KP587785252), Tu)));
|
|
TI = VBYI(VFNMS(LDK(KP951056516), Tu, VMUL(LDK(KP587785252), Th)));
|
|
ST(&(x[WS(rs, 5)]), VADD(TD, TE), ms, &(x[WS(rs, 1)]));
|
|
TH = VSUB(TF, Ty);
|
|
ST(&(x[WS(rs, 3)]), VSUB(TH, TI), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 7)]), VADD(TI, TH), ms, &(x[WS(rs, 1)]));
|
|
TG = VADD(Ty, TF);
|
|
ST(&(x[WS(rs, 1)]), VADD(Tv, TG), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 9)]), VSUB(TG, Tv), ms, &(x[WS(rs, 1)]));
|
|
}
|
|
{
|
|
V TV, TT, TU, TP, TY, TL, TO, TX, TW;
|
|
TV = VMUL(LDK(KP559016994), VSUB(TR, TS));
|
|
TT = VADD(TR, TS);
|
|
TU = VFNMS(LDK(KP250000000), TT, TQ);
|
|
TL = VSUB(TJ, TK);
|
|
TO = VSUB(TM, TN);
|
|
TP = VBYI(VFNMS(LDK(KP951056516), TO, VMUL(LDK(KP587785252), TL)));
|
|
TY = VBYI(VFMA(LDK(KP951056516), TL, VMUL(LDK(KP587785252), TO)));
|
|
ST(&(x[0]), VADD(TQ, TT), ms, &(x[0]));
|
|
TX = VADD(TV, TU);
|
|
ST(&(x[WS(rs, 4)]), VSUB(TX, TY), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 6)]), VADD(TY, TX), ms, &(x[0]));
|
|
TW = VSUB(TU, TV);
|
|
ST(&(x[WS(rs, 2)]), VADD(TP, TW), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 8)]), VSUB(TW, TP), ms, &(x[0]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(0, 1),
|
|
VTW(0, 3),
|
|
VTW(0, 9),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 10, XSIMD_STRING("t3bv_10"), twinstr, &GENUS, { 51, 36, 6, 0 }, 0, 0, 0 };
|
|
|
|
void XSIMD(codelet_t3bv_10) (planner *p) {
|
|
X(kdft_dit_register) (p, t3bv_10, &desc);
|
|
}
|
|
#endif
|