mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-18 22:40:20 +00:00
54e93db207
not reliable yet
297 lines
12 KiB
C
297 lines
12 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/* This file was automatically generated --- DO NOT EDIT */
|
|
/* Generated on Tue Sep 14 10:47:22 EDT 2021 */
|
|
|
|
#include "rdft/codelet-rdft.h"
|
|
|
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
|
|
|
/* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dit -name hc2cfdftv_10 -include rdft/simd/hc2cfv.h */
|
|
|
|
/*
|
|
* This function contains 61 FP additions, 60 FP multiplications,
|
|
* (or, 33 additions, 32 multiplications, 28 fused multiply/add),
|
|
* 77 stack variables, 5 constants, and 20 memory accesses
|
|
*/
|
|
#include "rdft/simd/hc2cfv.h"
|
|
|
|
static void hc2cfdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
|
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
|
DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
|
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
|
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
|
{
|
|
INT m;
|
|
for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
|
|
V T8, T11, T12, TG, TH, TP, Tp, TA, TB, TS, TV, TW, TC, TX, TI;
|
|
V TM, TF, TL, TD, TE, TJ, TO, TK, TN, T13, T17, T10, T16, TY, TZ;
|
|
V T14, T19, T15, T18;
|
|
{
|
|
V T3, To, TU, Th, TT, TR, Tz, Tu, TQ, T7, T1, T2, Tw, T5, T6;
|
|
V Tr, Tc, Tj, Tg, Ty, Tn, Tt, Tv, Tq, Ta, Tb, T9, Ti, Te, Tf;
|
|
V Td, Tx, Tl, Tm, Tk, Ts, T4;
|
|
T1 = LD(&(Rp[0]), ms, &(Rp[0]));
|
|
T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
|
Tv = LDW(&(W[0]));
|
|
Tw = VZMULIJ(Tv, VFNMSCONJ(T2, T1));
|
|
T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
|
T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
|
Tq = LDW(&(W[TWVL * 6]));
|
|
Tr = VZMULJ(Tq, VFMACONJ(T6, T5));
|
|
Ta = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
|
Tb = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
|
T9 = LDW(&(W[TWVL * 2]));
|
|
Tc = VZMULJ(T9, VFMACONJ(Tb, Ta));
|
|
Ti = LDW(&(W[TWVL * 4]));
|
|
Tj = VZMULIJ(Ti, VFNMSCONJ(Tb, Ta));
|
|
Te = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
|
Tf = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
|
Td = LDW(&(W[TWVL * 12]));
|
|
Tg = VZMULIJ(Td, VFNMSCONJ(Tf, Te));
|
|
Tx = LDW(&(W[TWVL * 10]));
|
|
Ty = VZMULJ(Tx, VFMACONJ(Tf, Te));
|
|
Tl = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
|
|
Tm = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
|
|
Tk = LDW(&(W[TWVL * 14]));
|
|
Tn = VZMULJ(Tk, VFMACONJ(Tm, Tl));
|
|
Ts = LDW(&(W[TWVL * 16]));
|
|
Tt = VZMULIJ(Ts, VFNMSCONJ(Tm, Tl));
|
|
T3 = VFMACONJ(T2, T1);
|
|
To = VSUB(Tj, Tn);
|
|
TU = VADD(Tr, Tt);
|
|
Th = VSUB(Tc, Tg);
|
|
TT = VADD(Tw, Ty);
|
|
TR = VADD(Tj, Tn);
|
|
Tz = VSUB(Tw, Ty);
|
|
Tu = VSUB(Tr, Tt);
|
|
TQ = VADD(Tc, Tg);
|
|
T4 = LDW(&(W[TWVL * 8]));
|
|
T7 = VZMULIJ(T4, VFNMSCONJ(T6, T5));
|
|
T8 = VSUB(T3, T7);
|
|
T11 = VSUB(TQ, TR);
|
|
T12 = VSUB(TU, TT);
|
|
TG = VADD(Tz, Tu);
|
|
TH = VADD(Th, To);
|
|
TP = VADD(T3, T7);
|
|
Tp = VSUB(Th, To);
|
|
TA = VSUB(Tu, Tz);
|
|
TB = VADD(Tp, TA);
|
|
TS = VADD(TQ, TR);
|
|
TV = VADD(TT, TU);
|
|
TW = VADD(TS, TV);
|
|
}
|
|
TC = VMUL(LDK(KP500000000), VADD(T8, TB));
|
|
ST(&(Rp[0]), TC, ms, &(Rp[0]));
|
|
TX = VCONJ(VMUL(LDK(KP500000000), VADD(TP, TW)));
|
|
ST(&(Rm[WS(rs, 4)]), TX, -ms, &(Rm[0]));
|
|
TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TH, TG));
|
|
TM = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TG, TH));
|
|
TD = VFNMS(LDK(KP250000000), TB, T8);
|
|
TE = VSUB(Tp, TA);
|
|
TF = VFNMS(LDK(KP559016994), TE, TD);
|
|
TL = VFMA(LDK(KP559016994), TE, TD);
|
|
TJ = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TI, TF)));
|
|
ST(&(Rm[WS(rs, 1)]), TJ, -ms, &(Rm[WS(rs, 1)]));
|
|
TO = VMUL(LDK(KP500000000), VFMAI(TM, TL));
|
|
ST(&(Rp[WS(rs, 4)]), TO, ms, &(Rp[0]));
|
|
TK = VMUL(LDK(KP500000000), VFMAI(TI, TF));
|
|
ST(&(Rp[WS(rs, 2)]), TK, ms, &(Rp[0]));
|
|
TN = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TM, TL)));
|
|
ST(&(Rm[WS(rs, 3)]), TN, -ms, &(Rm[WS(rs, 1)]));
|
|
T13 = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T12, T11));
|
|
T17 = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T11, T12));
|
|
TY = VFNMS(LDK(KP250000000), TW, TP);
|
|
TZ = VSUB(TS, TV);
|
|
T10 = VFMA(LDK(KP559016994), TZ, TY);
|
|
T16 = VFNMS(LDK(KP559016994), TZ, TY);
|
|
T14 = VMUL(LDK(KP500000000), VFNMSI(T13, T10));
|
|
ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)]));
|
|
T19 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T17, T16)));
|
|
ST(&(Rm[WS(rs, 2)]), T19, -ms, &(Rm[0]));
|
|
T15 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T13, T10)));
|
|
ST(&(Rm[0]), T15, -ms, &(Rm[0]));
|
|
T18 = VMUL(LDK(KP500000000), VFNMSI(T17, T16));
|
|
ST(&(Rp[WS(rs, 3)]), T18, ms, &(Rp[WS(rs, 1)]));
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(1, 1),
|
|
VTW(1, 2),
|
|
VTW(1, 3),
|
|
VTW(1, 4),
|
|
VTW(1, 5),
|
|
VTW(1, 6),
|
|
VTW(1, 7),
|
|
VTW(1, 8),
|
|
VTW(1, 9),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cfdftv_10"), twinstr, &GENUS, { 33, 32, 28, 0 } };
|
|
|
|
void XSIMD(codelet_hc2cfdftv_10) (planner *p) {
|
|
X(khc2c_register) (p, hc2cfdftv_10, &desc, HC2C_VIA_DFT);
|
|
}
|
|
#else
|
|
|
|
/* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dit -name hc2cfdftv_10 -include rdft/simd/hc2cfv.h */
|
|
|
|
/*
|
|
* This function contains 61 FP additions, 38 FP multiplications,
|
|
* (or, 55 additions, 32 multiplications, 6 fused multiply/add),
|
|
* 82 stack variables, 5 constants, and 20 memory accesses
|
|
*/
|
|
#include "rdft/simd/hc2cfv.h"
|
|
|
|
static void hc2cfdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DVK(KP125000000, +0.125000000000000000000000000000000000000000000);
|
|
DVK(KP279508497, +0.279508497187473712051146708591409529430077295);
|
|
DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
|
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
|
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
|
{
|
|
INT m;
|
|
for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
|
|
V Tl, Tt, Tu, TY, TZ, T10, Tz, TE, TF, TV, TW, TX, Ta, TU, TN;
|
|
V TR, TH, TQ, TK, TL, TM, TI, TG, TJ, TT, TO, TP, TS, T18, T1c;
|
|
V T12, T1b, T15, T16, T17, T14, T11, T13, T1e, T19, T1a, T1d;
|
|
{
|
|
V T1, T3, Ty, T8, T7, TB, Tf, Ts, Tk, Tw, Tq, TD, T2, Tx, T6;
|
|
V TA, Tc, Te, Td, Tb, Tr, Tj, Ti, Th, Tg, Tv, Tn, Tp, To, Tm;
|
|
V TC, T4, T9, T5;
|
|
T1 = LD(&(Rp[0]), ms, &(Rp[0]));
|
|
T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
|
T3 = VCONJ(T2);
|
|
Tx = LDW(&(W[0]));
|
|
Ty = VZMULIJ(Tx, VSUB(T3, T1));
|
|
T8 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
|
T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
|
T7 = VCONJ(T6);
|
|
TA = LDW(&(W[TWVL * 6]));
|
|
TB = VZMULJ(TA, VADD(T7, T8));
|
|
Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
|
Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
|
Te = VCONJ(Td);
|
|
Tb = LDW(&(W[TWVL * 2]));
|
|
Tf = VZMULJ(Tb, VADD(Tc, Te));
|
|
Tr = LDW(&(W[TWVL * 4]));
|
|
Ts = VZMULIJ(Tr, VSUB(Te, Tc));
|
|
Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
|
Th = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
|
Ti = VCONJ(Th);
|
|
Tg = LDW(&(W[TWVL * 12]));
|
|
Tk = VZMULIJ(Tg, VSUB(Ti, Tj));
|
|
Tv = LDW(&(W[TWVL * 10]));
|
|
Tw = VZMULJ(Tv, VADD(Ti, Tj));
|
|
Tn = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
|
|
To = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
|
|
Tp = VCONJ(To);
|
|
Tm = LDW(&(W[TWVL * 14]));
|
|
Tq = VZMULJ(Tm, VADD(Tn, Tp));
|
|
TC = LDW(&(W[TWVL * 16]));
|
|
TD = VZMULIJ(TC, VSUB(Tp, Tn));
|
|
Tl = VSUB(Tf, Tk);
|
|
Tt = VSUB(Tq, Ts);
|
|
Tu = VADD(Tl, Tt);
|
|
TY = VADD(Ty, Tw);
|
|
TZ = VADD(TB, TD);
|
|
T10 = VADD(TY, TZ);
|
|
Tz = VSUB(Tw, Ty);
|
|
TE = VSUB(TB, TD);
|
|
TF = VADD(Tz, TE);
|
|
TV = VADD(Tf, Tk);
|
|
TW = VADD(Ts, Tq);
|
|
TX = VADD(TV, TW);
|
|
T4 = VADD(T1, T3);
|
|
T5 = LDW(&(W[TWVL * 8]));
|
|
T9 = VZMULIJ(T5, VSUB(T7, T8));
|
|
Ta = VSUB(T4, T9);
|
|
TU = VADD(T4, T9);
|
|
}
|
|
TL = VSUB(Tl, Tt);
|
|
TM = VSUB(TE, Tz);
|
|
TN = VMUL(LDK(KP500000000), VBYI(VFMA(LDK(KP951056516), TL, VMUL(LDK(KP587785252), TM))));
|
|
TR = VMUL(LDK(KP500000000), VBYI(VFNMS(LDK(KP587785252), TL, VMUL(LDK(KP951056516), TM))));
|
|
TI = VMUL(LDK(KP279508497), VSUB(Tu, TF));
|
|
TG = VADD(Tu, TF);
|
|
TJ = VFNMS(LDK(KP125000000), TG, VMUL(LDK(KP500000000), Ta));
|
|
TH = VCONJ(VMUL(LDK(KP500000000), VADD(Ta, TG)));
|
|
TQ = VSUB(TJ, TI);
|
|
TK = VADD(TI, TJ);
|
|
ST(&(Rm[WS(rs, 4)]), TH, -ms, &(Rm[0]));
|
|
TT = VCONJ(VADD(TQ, TR));
|
|
ST(&(Rm[WS(rs, 2)]), TT, -ms, &(Rm[0]));
|
|
TO = VSUB(TK, TN);
|
|
ST(&(Rp[WS(rs, 1)]), TO, ms, &(Rp[WS(rs, 1)]));
|
|
TP = VCONJ(VADD(TK, TN));
|
|
ST(&(Rm[0]), TP, -ms, &(Rm[0]));
|
|
TS = VSUB(TQ, TR);
|
|
ST(&(Rp[WS(rs, 3)]), TS, ms, &(Rp[WS(rs, 1)]));
|
|
T16 = VSUB(TZ, TY);
|
|
T17 = VSUB(TV, TW);
|
|
T18 = VMUL(LDK(KP500000000), VBYI(VFNMS(LDK(KP587785252), T17, VMUL(LDK(KP951056516), T16))));
|
|
T1c = VMUL(LDK(KP500000000), VBYI(VFMA(LDK(KP951056516), T17, VMUL(LDK(KP587785252), T16))));
|
|
T14 = VMUL(LDK(KP279508497), VSUB(TX, T10));
|
|
T11 = VADD(TX, T10);
|
|
T13 = VFNMS(LDK(KP125000000), T11, VMUL(LDK(KP500000000), TU));
|
|
T12 = VMUL(LDK(KP500000000), VADD(TU, T11));
|
|
T1b = VADD(T14, T13);
|
|
T15 = VSUB(T13, T14);
|
|
ST(&(Rp[0]), T12, ms, &(Rp[0]));
|
|
T1e = VADD(T1b, T1c);
|
|
ST(&(Rp[WS(rs, 4)]), T1e, ms, &(Rp[0]));
|
|
T19 = VCONJ(VSUB(T15, T18));
|
|
ST(&(Rm[WS(rs, 1)]), T19, -ms, &(Rm[WS(rs, 1)]));
|
|
T1a = VADD(T15, T18);
|
|
ST(&(Rp[WS(rs, 2)]), T1a, ms, &(Rp[0]));
|
|
T1d = VCONJ(VSUB(T1b, T1c));
|
|
ST(&(Rm[WS(rs, 3)]), T1d, -ms, &(Rm[WS(rs, 1)]));
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(1, 1),
|
|
VTW(1, 2),
|
|
VTW(1, 3),
|
|
VTW(1, 4),
|
|
VTW(1, 5),
|
|
VTW(1, 6),
|
|
VTW(1, 7),
|
|
VTW(1, 8),
|
|
VTW(1, 9),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cfdftv_10"), twinstr, &GENUS, { 55, 32, 6, 0 } };
|
|
|
|
void XSIMD(codelet_hc2cfdftv_10) (planner *p) {
|
|
X(khc2c_register) (p, hc2cfdftv_10, &desc, HC2C_VIA_DFT);
|
|
}
|
|
#endif
|