mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-18 14:30:15 +00:00
54e93db207
not reliable yet
907 lines
26 KiB
C
907 lines
26 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
#include "api/api.h"
|
|
#include "fftw3-mpi.h"
|
|
#include "ifftw-mpi.h"
|
|
#include "mpi-transpose.h"
|
|
#include "mpi-dft.h"
|
|
#include "mpi-rdft.h"
|
|
#include "mpi-rdft2.h"
|
|
|
|
/* Convert API flags to internal MPI flags. */
|
|
#define MPI_FLAGS(f) ((f) >> 27)
|
|
|
|
/*************************************************************************/
|
|
|
|
static int mpi_inited = 0;
|
|
|
|
static MPI_Comm problem_comm(const problem *p) {
|
|
switch (p->adt->problem_kind) {
|
|
case PROBLEM_MPI_DFT:
|
|
return ((const problem_mpi_dft *) p)->comm;
|
|
case PROBLEM_MPI_RDFT:
|
|
return ((const problem_mpi_rdft *) p)->comm;
|
|
case PROBLEM_MPI_RDFT2:
|
|
return ((const problem_mpi_rdft2 *) p)->comm;
|
|
case PROBLEM_MPI_TRANSPOSE:
|
|
return ((const problem_mpi_transpose *) p)->comm;
|
|
default:
|
|
return MPI_COMM_NULL;
|
|
}
|
|
}
|
|
|
|
/* used to synchronize cost measurements (timing or estimation)
|
|
across all processes for an MPI problem, which is critical to
|
|
ensure that all processes decide to use the same MPI plans
|
|
(whereas serial plans need not be syncronized). */
|
|
static double cost_hook(const problem *p, double t, cost_kind k)
|
|
{
|
|
MPI_Comm comm = problem_comm(p);
|
|
double tsum;
|
|
if (comm == MPI_COMM_NULL) return t;
|
|
MPI_Allreduce(&t, &tsum, 1, MPI_DOUBLE,
|
|
k == COST_SUM ? MPI_SUM : MPI_MAX, comm);
|
|
return tsum;
|
|
}
|
|
|
|
/* Used to reject wisdom that is not in sync across all processes
|
|
for an MPI problem, which is critical to ensure that all processes
|
|
decide to use the same MPI plans. (Even though costs are synchronized,
|
|
above, out-of-sync wisdom may result from plans being produced
|
|
by communicators that do not span all processes, either from a
|
|
user-specified communicator or e.g. from transpose-recurse. */
|
|
static int wisdom_ok_hook(const problem *p, flags_t flags)
|
|
{
|
|
MPI_Comm comm = problem_comm(p);
|
|
int eq_me, eq_all;
|
|
/* unpack flags bitfield, since MPI communications may involve
|
|
byte-order changes and MPI cannot do this for bit fields */
|
|
#if SIZEOF_UNSIGNED_INT >= 4 /* must be big enough to hold 20-bit fields */
|
|
unsigned int f[5];
|
|
#else
|
|
unsigned long f[5]; /* at least 32 bits as per C standard */
|
|
#endif
|
|
|
|
if (comm == MPI_COMM_NULL) return 1; /* non-MPI wisdom is always ok */
|
|
|
|
if (XM(any_true)(0, comm)) return 0; /* some process had nowisdom_hook */
|
|
|
|
/* otherwise, check that the flags and solver index are identical
|
|
on all processes in this problem's communicator.
|
|
|
|
TO DO: possibly we can relax strict equality, but it is
|
|
critical to ensure that any flags which affect what plan is
|
|
created (and whether the solver is applicable) are the same,
|
|
e.g. DESTROY_INPUT, NO_UGLY, etcetera. (If the MPI algorithm
|
|
differs between processes, deadlocks/crashes generally result.) */
|
|
f[0] = flags.l;
|
|
f[1] = flags.hash_info;
|
|
f[2] = flags.timelimit_impatience;
|
|
f[3] = flags.u;
|
|
f[4] = flags.slvndx;
|
|
MPI_Bcast(f, 5,
|
|
SIZEOF_UNSIGNED_INT >= 4 ? MPI_UNSIGNED : MPI_UNSIGNED_LONG,
|
|
0, comm);
|
|
eq_me = f[0] == flags.l && f[1] == flags.hash_info
|
|
&& f[2] == flags.timelimit_impatience
|
|
&& f[3] == flags.u && f[4] == flags.slvndx;
|
|
MPI_Allreduce(&eq_me, &eq_all, 1, MPI_INT, MPI_LAND, comm);
|
|
return eq_all;
|
|
}
|
|
|
|
/* This hook is called when wisdom is not found. The any_true here
|
|
matches up with the any_true in wisdom_ok_hook, in order to handle
|
|
the case where some processes had wisdom (and called wisdom_ok_hook)
|
|
and some processes didn't have wisdom (and called nowisdom_hook). */
|
|
static void nowisdom_hook(const problem *p)
|
|
{
|
|
MPI_Comm comm = problem_comm(p);
|
|
if (comm == MPI_COMM_NULL) return; /* nothing to do for non-MPI p */
|
|
XM(any_true)(1, comm); /* signal nowisdom to any wisdom_ok_hook */
|
|
}
|
|
|
|
/* needed to synchronize planner bogosity flag, in case non-MPI problems
|
|
on a subset of processes encountered bogus wisdom */
|
|
static wisdom_state_t bogosity_hook(wisdom_state_t state, const problem *p)
|
|
{
|
|
MPI_Comm comm = problem_comm(p);
|
|
if (comm != MPI_COMM_NULL /* an MPI problem */
|
|
&& XM(any_true)(state == WISDOM_IS_BOGUS, comm)) /* bogus somewhere */
|
|
return WISDOM_IS_BOGUS;
|
|
return state;
|
|
}
|
|
|
|
void XM(init)(void)
|
|
{
|
|
if (!mpi_inited) {
|
|
planner *plnr = X(the_planner)();
|
|
plnr->cost_hook = cost_hook;
|
|
plnr->wisdom_ok_hook = wisdom_ok_hook;
|
|
plnr->nowisdom_hook = nowisdom_hook;
|
|
plnr->bogosity_hook = bogosity_hook;
|
|
XM(conf_standard)(plnr);
|
|
mpi_inited = 1;
|
|
}
|
|
}
|
|
|
|
void XM(cleanup)(void)
|
|
{
|
|
X(cleanup)();
|
|
mpi_inited = 0;
|
|
}
|
|
|
|
/*************************************************************************/
|
|
|
|
static dtensor *mkdtensor_api(int rnk, const XM(ddim) *dims0)
|
|
{
|
|
dtensor *x = XM(mkdtensor)(rnk);
|
|
int i;
|
|
for (i = 0; i < rnk; ++i) {
|
|
x->dims[i].n = dims0[i].n;
|
|
x->dims[i].b[IB] = dims0[i].ib;
|
|
x->dims[i].b[OB] = dims0[i].ob;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
static dtensor *default_sz(int rnk, const XM(ddim) *dims0, int n_pes,
|
|
int rdft2)
|
|
{
|
|
dtensor *sz = XM(mkdtensor)(rnk);
|
|
dtensor *sz0 = mkdtensor_api(rnk, dims0);
|
|
block_kind k;
|
|
int i;
|
|
|
|
for (i = 0; i < rnk; ++i)
|
|
sz->dims[i].n = dims0[i].n;
|
|
|
|
if (rdft2) sz->dims[rnk-1].n = dims0[rnk-1].n / 2 + 1;
|
|
|
|
for (i = 0; i < rnk; ++i) {
|
|
sz->dims[i].b[IB] = dims0[i].ib ? dims0[i].ib : sz->dims[i].n;
|
|
sz->dims[i].b[OB] = dims0[i].ob ? dims0[i].ob : sz->dims[i].n;
|
|
}
|
|
|
|
/* If we haven't used all of the processes yet, and some of the
|
|
block sizes weren't specified (i.e. 0), then set the
|
|
unspecified blocks so as to use as many processes as
|
|
possible with as few distributed dimensions as possible. */
|
|
FORALL_BLOCK_KIND(k) {
|
|
INT nb = XM(num_blocks_total)(sz, k);
|
|
INT np = n_pes / nb;
|
|
for (i = 0; i < rnk && np > 1; ++i)
|
|
if (!sz0->dims[i].b[k]) {
|
|
sz->dims[i].b[k] = XM(default_block)(sz->dims[i].n, np);
|
|
nb *= XM(num_blocks)(sz->dims[i].n, sz->dims[i].b[k]);
|
|
np = n_pes / nb;
|
|
}
|
|
}
|
|
|
|
if (rdft2) sz->dims[rnk-1].n = dims0[rnk-1].n;
|
|
|
|
/* punt for 1d prime */
|
|
if (rnk == 1 && X(is_prime)(sz->dims[0].n))
|
|
sz->dims[0].b[IB] = sz->dims[0].b[OB] = sz->dims[0].n;
|
|
|
|
XM(dtensor_destroy)(sz0);
|
|
sz0 = XM(dtensor_canonical)(sz, 0);
|
|
XM(dtensor_destroy)(sz);
|
|
return sz0;
|
|
}
|
|
|
|
/* allocate simple local (serial) dims array corresponding to n[rnk] */
|
|
static XM(ddim) *simple_dims(int rnk, const ptrdiff_t *n)
|
|
{
|
|
XM(ddim) *dims = (XM(ddim) *) MALLOC(sizeof(XM(ddim)) * rnk,
|
|
TENSORS);
|
|
int i;
|
|
for (i = 0; i < rnk; ++i)
|
|
dims[i].n = dims[i].ib = dims[i].ob = n[i];
|
|
return dims;
|
|
}
|
|
|
|
/*************************************************************************/
|
|
|
|
static void local_size(int my_pe, const dtensor *sz, block_kind k,
|
|
ptrdiff_t *local_n, ptrdiff_t *local_start)
|
|
{
|
|
int i;
|
|
if (my_pe >= XM(num_blocks_total)(sz, k))
|
|
for (i = 0; i < sz->rnk; ++i)
|
|
local_n[i] = local_start[i] = 0;
|
|
else {
|
|
XM(block_coords)(sz, k, my_pe, local_start);
|
|
for (i = 0; i < sz->rnk; ++i) {
|
|
local_n[i] = XM(block)(sz->dims[i].n, sz->dims[i].b[k],
|
|
local_start[i]);
|
|
local_start[i] *= sz->dims[i].b[k];
|
|
}
|
|
}
|
|
}
|
|
|
|
static INT prod(int rnk, const ptrdiff_t *local_n)
|
|
{
|
|
int i;
|
|
INT N = 1;
|
|
for (i = 0; i < rnk; ++i) N *= local_n[i];
|
|
return N;
|
|
}
|
|
|
|
ptrdiff_t XM(local_size_guru)(int rnk, const XM(ddim) *dims0,
|
|
ptrdiff_t howmany, MPI_Comm comm,
|
|
ptrdiff_t *local_n_in,
|
|
ptrdiff_t *local_start_in,
|
|
ptrdiff_t *local_n_out,
|
|
ptrdiff_t *local_start_out,
|
|
int sign, unsigned flags)
|
|
{
|
|
INT N;
|
|
int my_pe, n_pes, i;
|
|
dtensor *sz;
|
|
|
|
if (rnk == 0)
|
|
return howmany;
|
|
|
|
MPI_Comm_rank(comm, &my_pe);
|
|
MPI_Comm_size(comm, &n_pes);
|
|
sz = default_sz(rnk, dims0, n_pes, 0);
|
|
|
|
/* Now, we must figure out how much local space the user should
|
|
allocate (or at least an upper bound). This depends strongly
|
|
on the exact algorithms we employ...ugh! FIXME: get this info
|
|
from the solvers somehow? */
|
|
N = 1; /* never return zero allocation size */
|
|
if (rnk > 1 && XM(is_block1d)(sz, IB) && XM(is_block1d)(sz, OB)) {
|
|
INT Nafter;
|
|
ddim odims[2];
|
|
|
|
/* dft-rank-geq2-transposed */
|
|
odims[0] = sz->dims[0]; odims[1] = sz->dims[1]; /* save */
|
|
/* we may need extra space for transposed intermediate data */
|
|
for (i = 0; i < 2; ++i)
|
|
if (XM(num_blocks)(sz->dims[i].n, sz->dims[i].b[IB]) == 1 &&
|
|
XM(num_blocks)(sz->dims[i].n, sz->dims[i].b[OB]) == 1) {
|
|
sz->dims[i].b[IB]
|
|
= XM(default_block)(sz->dims[i].n, n_pes);
|
|
sz->dims[1-i].b[IB] = sz->dims[1-i].n;
|
|
local_size(my_pe, sz, IB, local_n_in, local_start_in);
|
|
N = X(imax)(N, prod(rnk, local_n_in));
|
|
sz->dims[i] = odims[i];
|
|
sz->dims[1-i] = odims[1-i];
|
|
break;
|
|
}
|
|
|
|
/* dft-rank-geq2 */
|
|
Nafter = howmany;
|
|
for (i = 1; i < sz->rnk; ++i) Nafter *= sz->dims[i].n;
|
|
N = X(imax)(N, (sz->dims[0].n
|
|
* XM(block)(Nafter, XM(default_block)(Nafter, n_pes),
|
|
my_pe) + howmany - 1) / howmany);
|
|
|
|
/* dft-rank-geq2 with dimensions swapped */
|
|
Nafter = howmany * sz->dims[0].n;
|
|
for (i = 2; i < sz->rnk; ++i) Nafter *= sz->dims[i].n;
|
|
N = X(imax)(N, (sz->dims[1].n
|
|
* XM(block)(Nafter, XM(default_block)(Nafter, n_pes),
|
|
my_pe) + howmany - 1) / howmany);
|
|
}
|
|
else if (rnk == 1) {
|
|
if (howmany >= n_pes && !MPI_FLAGS(flags)) { /* dft-rank1-bigvec */
|
|
ptrdiff_t n[2], start[2];
|
|
dtensor *sz2 = XM(mkdtensor)(2);
|
|
sz2->dims[0] = sz->dims[0];
|
|
sz2->dims[0].b[IB] = sz->dims[0].n;
|
|
sz2->dims[1].n = sz2->dims[1].b[OB] = howmany;
|
|
sz2->dims[1].b[IB] = XM(default_block)(howmany, n_pes);
|
|
local_size(my_pe, sz2, IB, n, start);
|
|
XM(dtensor_destroy)(sz2);
|
|
N = X(imax)(N, (prod(2, n) + howmany - 1) / howmany);
|
|
}
|
|
else { /* dft-rank1 */
|
|
INT r, m, rblock[2], mblock[2];
|
|
|
|
/* Since the 1d transforms are so different, we require
|
|
the user to call local_size_1d for this case. Ugh. */
|
|
CK(sign == FFTW_FORWARD || sign == FFTW_BACKWARD);
|
|
|
|
if ((r = XM(choose_radix)(sz->dims[0], n_pes, flags, sign,
|
|
rblock, mblock))) {
|
|
m = sz->dims[0].n / r;
|
|
if (flags & FFTW_MPI_SCRAMBLED_IN)
|
|
sz->dims[0].b[IB] = rblock[IB] * m;
|
|
else { /* !SCRAMBLED_IN */
|
|
sz->dims[0].b[IB] = r * mblock[IB];
|
|
N = X(imax)(N, rblock[IB] * m);
|
|
}
|
|
if (flags & FFTW_MPI_SCRAMBLED_OUT)
|
|
sz->dims[0].b[OB] = r * mblock[OB];
|
|
else { /* !SCRAMBLED_OUT */
|
|
N = X(imax)(N, r * mblock[OB]);
|
|
sz->dims[0].b[OB] = rblock[OB] * m;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
local_size(my_pe, sz, IB, local_n_in, local_start_in);
|
|
local_size(my_pe, sz, OB, local_n_out, local_start_out);
|
|
|
|
/* at least, make sure we have enough space to store input & output */
|
|
N = X(imax)(N, X(imax)(prod(rnk, local_n_in), prod(rnk, local_n_out)));
|
|
|
|
XM(dtensor_destroy)(sz);
|
|
return N * howmany;
|
|
}
|
|
|
|
ptrdiff_t XM(local_size_many_transposed)(int rnk, const ptrdiff_t *n,
|
|
ptrdiff_t howmany,
|
|
ptrdiff_t xblock, ptrdiff_t yblock,
|
|
MPI_Comm comm,
|
|
ptrdiff_t *local_nx,
|
|
ptrdiff_t *local_x_start,
|
|
ptrdiff_t *local_ny,
|
|
ptrdiff_t *local_y_start)
|
|
{
|
|
ptrdiff_t N;
|
|
XM(ddim) *dims;
|
|
ptrdiff_t *local;
|
|
|
|
if (rnk == 0) {
|
|
*local_nx = *local_ny = 1;
|
|
*local_x_start = *local_y_start = 0;
|
|
return howmany;
|
|
}
|
|
|
|
dims = simple_dims(rnk, n);
|
|
local = (ptrdiff_t *) MALLOC(sizeof(ptrdiff_t) * rnk * 4, TENSORS);
|
|
|
|
/* default 1d block distribution, with transposed output
|
|
if yblock < n[1] */
|
|
dims[0].ib = xblock;
|
|
if (rnk > 1) {
|
|
if (yblock < n[1])
|
|
dims[1].ob = yblock;
|
|
else
|
|
dims[0].ob = xblock;
|
|
}
|
|
else
|
|
dims[0].ob = xblock; /* FIXME: 1d not really supported here
|
|
since we don't have flags/sign */
|
|
|
|
N = XM(local_size_guru)(rnk, dims, howmany, comm,
|
|
local, local + rnk,
|
|
local + 2*rnk, local + 3*rnk,
|
|
0, 0);
|
|
*local_nx = local[0];
|
|
*local_x_start = local[rnk];
|
|
if (rnk > 1) {
|
|
*local_ny = local[2*rnk + 1];
|
|
*local_y_start = local[3*rnk + 1];
|
|
}
|
|
else {
|
|
*local_ny = *local_nx;
|
|
*local_y_start = *local_x_start;
|
|
}
|
|
X(ifree)(local);
|
|
X(ifree)(dims);
|
|
return N;
|
|
}
|
|
|
|
ptrdiff_t XM(local_size_many)(int rnk, const ptrdiff_t *n,
|
|
ptrdiff_t howmany,
|
|
ptrdiff_t xblock,
|
|
MPI_Comm comm,
|
|
ptrdiff_t *local_nx,
|
|
ptrdiff_t *local_x_start)
|
|
{
|
|
ptrdiff_t local_ny, local_y_start;
|
|
return XM(local_size_many_transposed)(rnk, n, howmany,
|
|
xblock, rnk > 1
|
|
? n[1] : FFTW_MPI_DEFAULT_BLOCK,
|
|
comm,
|
|
local_nx, local_x_start,
|
|
&local_ny, &local_y_start);
|
|
}
|
|
|
|
|
|
ptrdiff_t XM(local_size_transposed)(int rnk, const ptrdiff_t *n,
|
|
MPI_Comm comm,
|
|
ptrdiff_t *local_nx,
|
|
ptrdiff_t *local_x_start,
|
|
ptrdiff_t *local_ny,
|
|
ptrdiff_t *local_y_start)
|
|
{
|
|
return XM(local_size_many_transposed)(rnk, n, 1,
|
|
FFTW_MPI_DEFAULT_BLOCK,
|
|
FFTW_MPI_DEFAULT_BLOCK,
|
|
comm,
|
|
local_nx, local_x_start,
|
|
local_ny, local_y_start);
|
|
}
|
|
|
|
ptrdiff_t XM(local_size)(int rnk, const ptrdiff_t *n,
|
|
MPI_Comm comm,
|
|
ptrdiff_t *local_nx,
|
|
ptrdiff_t *local_x_start)
|
|
{
|
|
return XM(local_size_many)(rnk, n, 1, FFTW_MPI_DEFAULT_BLOCK, comm,
|
|
local_nx, local_x_start);
|
|
}
|
|
|
|
ptrdiff_t XM(local_size_many_1d)(ptrdiff_t nx, ptrdiff_t howmany,
|
|
MPI_Comm comm, int sign, unsigned flags,
|
|
ptrdiff_t *local_nx, ptrdiff_t *local_x_start,
|
|
ptrdiff_t *local_ny, ptrdiff_t *local_y_start)
|
|
{
|
|
XM(ddim) d;
|
|
d.n = nx;
|
|
d.ib = d.ob = FFTW_MPI_DEFAULT_BLOCK;
|
|
return XM(local_size_guru)(1, &d, howmany, comm,
|
|
local_nx, local_x_start,
|
|
local_ny, local_y_start, sign, flags);
|
|
}
|
|
|
|
ptrdiff_t XM(local_size_1d)(ptrdiff_t nx,
|
|
MPI_Comm comm, int sign, unsigned flags,
|
|
ptrdiff_t *local_nx, ptrdiff_t *local_x_start,
|
|
ptrdiff_t *local_ny, ptrdiff_t *local_y_start)
|
|
{
|
|
return XM(local_size_many_1d)(nx, 1, comm, sign, flags,
|
|
local_nx, local_x_start,
|
|
local_ny, local_y_start);
|
|
}
|
|
|
|
ptrdiff_t XM(local_size_2d_transposed)(ptrdiff_t nx, ptrdiff_t ny,
|
|
MPI_Comm comm,
|
|
ptrdiff_t *local_nx,
|
|
ptrdiff_t *local_x_start,
|
|
ptrdiff_t *local_ny,
|
|
ptrdiff_t *local_y_start)
|
|
{
|
|
ptrdiff_t n[2];
|
|
n[0] = nx; n[1] = ny;
|
|
return XM(local_size_transposed)(2, n, comm,
|
|
local_nx, local_x_start,
|
|
local_ny, local_y_start);
|
|
}
|
|
|
|
ptrdiff_t XM(local_size_2d)(ptrdiff_t nx, ptrdiff_t ny, MPI_Comm comm,
|
|
ptrdiff_t *local_nx, ptrdiff_t *local_x_start)
|
|
{
|
|
ptrdiff_t n[2];
|
|
n[0] = nx; n[1] = ny;
|
|
return XM(local_size)(2, n, comm, local_nx, local_x_start);
|
|
}
|
|
|
|
ptrdiff_t XM(local_size_3d_transposed)(ptrdiff_t nx, ptrdiff_t ny,
|
|
ptrdiff_t nz,
|
|
MPI_Comm comm,
|
|
ptrdiff_t *local_nx,
|
|
ptrdiff_t *local_x_start,
|
|
ptrdiff_t *local_ny,
|
|
ptrdiff_t *local_y_start)
|
|
{
|
|
ptrdiff_t n[3];
|
|
n[0] = nx; n[1] = ny; n[2] = nz;
|
|
return XM(local_size_transposed)(3, n, comm,
|
|
local_nx, local_x_start,
|
|
local_ny, local_y_start);
|
|
}
|
|
|
|
ptrdiff_t XM(local_size_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz,
|
|
MPI_Comm comm,
|
|
ptrdiff_t *local_nx, ptrdiff_t *local_x_start)
|
|
{
|
|
ptrdiff_t n[3];
|
|
n[0] = nx; n[1] = ny; n[2] = nz;
|
|
return XM(local_size)(3, n, comm, local_nx, local_x_start);
|
|
}
|
|
|
|
/*************************************************************************/
|
|
/* Transpose API */
|
|
|
|
X(plan) XM(plan_many_transpose)(ptrdiff_t nx, ptrdiff_t ny,
|
|
ptrdiff_t howmany,
|
|
ptrdiff_t xblock, ptrdiff_t yblock,
|
|
R *in, R *out,
|
|
MPI_Comm comm, unsigned flags)
|
|
{
|
|
int n_pes;
|
|
XM(init)();
|
|
|
|
if (howmany < 0 || xblock < 0 || yblock < 0 ||
|
|
nx <= 0 || ny <= 0) return 0;
|
|
|
|
MPI_Comm_size(comm, &n_pes);
|
|
if (!xblock) xblock = XM(default_block)(nx, n_pes);
|
|
if (!yblock) yblock = XM(default_block)(ny, n_pes);
|
|
if (n_pes < XM(num_blocks)(nx, xblock)
|
|
|| n_pes < XM(num_blocks)(ny, yblock))
|
|
return 0;
|
|
|
|
return
|
|
X(mkapiplan)(FFTW_FORWARD, flags,
|
|
XM(mkproblem_transpose)(nx, ny, howmany,
|
|
in, out, xblock, yblock,
|
|
comm, MPI_FLAGS(flags)));
|
|
}
|
|
|
|
X(plan) XM(plan_transpose)(ptrdiff_t nx, ptrdiff_t ny, R *in, R *out,
|
|
MPI_Comm comm, unsigned flags)
|
|
|
|
{
|
|
return XM(plan_many_transpose)(nx, ny, 1,
|
|
FFTW_MPI_DEFAULT_BLOCK,
|
|
FFTW_MPI_DEFAULT_BLOCK,
|
|
in, out, comm, flags);
|
|
}
|
|
|
|
/*************************************************************************/
|
|
/* Complex DFT API */
|
|
|
|
X(plan) XM(plan_guru_dft)(int rnk, const XM(ddim) *dims0,
|
|
ptrdiff_t howmany,
|
|
C *in, C *out,
|
|
MPI_Comm comm, int sign, unsigned flags)
|
|
{
|
|
int n_pes, i;
|
|
dtensor *sz;
|
|
|
|
XM(init)();
|
|
|
|
if (howmany < 0 || rnk < 1) return 0;
|
|
for (i = 0; i < rnk; ++i)
|
|
if (dims0[i].n < 1 || dims0[i].ib < 0 || dims0[i].ob < 0)
|
|
return 0;
|
|
|
|
MPI_Comm_size(comm, &n_pes);
|
|
sz = default_sz(rnk, dims0, n_pes, 0);
|
|
|
|
if (XM(num_blocks_total)(sz, IB) > n_pes
|
|
|| XM(num_blocks_total)(sz, OB) > n_pes) {
|
|
XM(dtensor_destroy)(sz);
|
|
return 0;
|
|
}
|
|
|
|
return
|
|
X(mkapiplan)(sign, flags,
|
|
XM(mkproblem_dft_d)(sz, howmany,
|
|
(R *) in, (R *) out,
|
|
comm, sign,
|
|
MPI_FLAGS(flags)));
|
|
}
|
|
|
|
X(plan) XM(plan_many_dft)(int rnk, const ptrdiff_t *n,
|
|
ptrdiff_t howmany,
|
|
ptrdiff_t iblock, ptrdiff_t oblock,
|
|
C *in, C *out,
|
|
MPI_Comm comm, int sign, unsigned flags)
|
|
{
|
|
XM(ddim) *dims = simple_dims(rnk, n);
|
|
X(plan) pln;
|
|
|
|
if (rnk == 1) {
|
|
dims[0].ib = iblock;
|
|
dims[0].ob = oblock;
|
|
}
|
|
else if (rnk > 1) {
|
|
dims[0 != (flags & FFTW_MPI_TRANSPOSED_IN)].ib = iblock;
|
|
dims[0 != (flags & FFTW_MPI_TRANSPOSED_OUT)].ob = oblock;
|
|
}
|
|
|
|
pln = XM(plan_guru_dft)(rnk,dims,howmany, in,out, comm, sign, flags);
|
|
X(ifree)(dims);
|
|
return pln;
|
|
}
|
|
|
|
X(plan) XM(plan_dft)(int rnk, const ptrdiff_t *n, C *in, C *out,
|
|
MPI_Comm comm, int sign, unsigned flags)
|
|
{
|
|
return XM(plan_many_dft)(rnk, n, 1,
|
|
FFTW_MPI_DEFAULT_BLOCK,
|
|
FFTW_MPI_DEFAULT_BLOCK,
|
|
in, out, comm, sign, flags);
|
|
}
|
|
|
|
X(plan) XM(plan_dft_1d)(ptrdiff_t nx, C *in, C *out,
|
|
MPI_Comm comm, int sign, unsigned flags)
|
|
{
|
|
return XM(plan_dft)(1, &nx, in, out, comm, sign, flags);
|
|
}
|
|
|
|
X(plan) XM(plan_dft_2d)(ptrdiff_t nx, ptrdiff_t ny, C *in, C *out,
|
|
MPI_Comm comm, int sign, unsigned flags)
|
|
{
|
|
ptrdiff_t n[2];
|
|
n[0] = nx; n[1] = ny;
|
|
return XM(plan_dft)(2, n, in, out, comm, sign, flags);
|
|
}
|
|
|
|
X(plan) XM(plan_dft_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz,
|
|
C *in, C *out,
|
|
MPI_Comm comm, int sign, unsigned flags)
|
|
{
|
|
ptrdiff_t n[3];
|
|
n[0] = nx; n[1] = ny; n[2] = nz;
|
|
return XM(plan_dft)(3, n, in, out, comm, sign, flags);
|
|
}
|
|
|
|
/*************************************************************************/
|
|
/* R2R API */
|
|
|
|
X(plan) XM(plan_guru_r2r)(int rnk, const XM(ddim) *dims0,
|
|
ptrdiff_t howmany,
|
|
R *in, R *out,
|
|
MPI_Comm comm, const X(r2r_kind) *kind,
|
|
unsigned flags)
|
|
{
|
|
int n_pes, i;
|
|
dtensor *sz;
|
|
rdft_kind *k;
|
|
X(plan) pln;
|
|
|
|
XM(init)();
|
|
|
|
if (howmany < 0 || rnk < 1) return 0;
|
|
for (i = 0; i < rnk; ++i)
|
|
if (dims0[i].n < 1 || dims0[i].ib < 0 || dims0[i].ob < 0)
|
|
return 0;
|
|
|
|
k = X(map_r2r_kind)(rnk, kind);
|
|
|
|
MPI_Comm_size(comm, &n_pes);
|
|
sz = default_sz(rnk, dims0, n_pes, 0);
|
|
|
|
if (XM(num_blocks_total)(sz, IB) > n_pes
|
|
|| XM(num_blocks_total)(sz, OB) > n_pes) {
|
|
XM(dtensor_destroy)(sz);
|
|
return 0;
|
|
}
|
|
|
|
pln = X(mkapiplan)(0, flags,
|
|
XM(mkproblem_rdft_d)(sz, howmany,
|
|
in, out,
|
|
comm, k, MPI_FLAGS(flags)));
|
|
X(ifree0)(k);
|
|
return pln;
|
|
}
|
|
|
|
X(plan) XM(plan_many_r2r)(int rnk, const ptrdiff_t *n,
|
|
ptrdiff_t howmany,
|
|
ptrdiff_t iblock, ptrdiff_t oblock,
|
|
R *in, R *out,
|
|
MPI_Comm comm, const X(r2r_kind) *kind,
|
|
unsigned flags)
|
|
{
|
|
XM(ddim) *dims = simple_dims(rnk, n);
|
|
X(plan) pln;
|
|
|
|
if (rnk == 1) {
|
|
dims[0].ib = iblock;
|
|
dims[0].ob = oblock;
|
|
}
|
|
else if (rnk > 1) {
|
|
dims[0 != (flags & FFTW_MPI_TRANSPOSED_IN)].ib = iblock;
|
|
dims[0 != (flags & FFTW_MPI_TRANSPOSED_OUT)].ob = oblock;
|
|
}
|
|
|
|
pln = XM(plan_guru_r2r)(rnk,dims,howmany, in,out, comm, kind, flags);
|
|
X(ifree)(dims);
|
|
return pln;
|
|
}
|
|
|
|
X(plan) XM(plan_r2r)(int rnk, const ptrdiff_t *n, R *in, R *out,
|
|
MPI_Comm comm,
|
|
const X(r2r_kind) *kind,
|
|
unsigned flags)
|
|
{
|
|
return XM(plan_many_r2r)(rnk, n, 1,
|
|
FFTW_MPI_DEFAULT_BLOCK,
|
|
FFTW_MPI_DEFAULT_BLOCK,
|
|
in, out, comm, kind, flags);
|
|
}
|
|
|
|
X(plan) XM(plan_r2r_2d)(ptrdiff_t nx, ptrdiff_t ny, R *in, R *out,
|
|
MPI_Comm comm,
|
|
X(r2r_kind) kindx, X(r2r_kind) kindy,
|
|
unsigned flags)
|
|
{
|
|
ptrdiff_t n[2];
|
|
X(r2r_kind) kind[2];
|
|
n[0] = nx; n[1] = ny;
|
|
kind[0] = kindx; kind[1] = kindy;
|
|
return XM(plan_r2r)(2, n, in, out, comm, kind, flags);
|
|
}
|
|
|
|
X(plan) XM(plan_r2r_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz,
|
|
R *in, R *out,
|
|
MPI_Comm comm,
|
|
X(r2r_kind) kindx, X(r2r_kind) kindy,
|
|
X(r2r_kind) kindz,
|
|
unsigned flags)
|
|
{
|
|
ptrdiff_t n[3];
|
|
X(r2r_kind) kind[3];
|
|
n[0] = nx; n[1] = ny; n[2] = nz;
|
|
kind[0] = kindx; kind[1] = kindy; kind[2] = kindz;
|
|
return XM(plan_r2r)(3, n, in, out, comm, kind, flags);
|
|
}
|
|
|
|
/*************************************************************************/
|
|
/* R2C/C2R API */
|
|
|
|
static X(plan) plan_guru_rdft2(int rnk, const XM(ddim) *dims0,
|
|
ptrdiff_t howmany,
|
|
R *r, C *c,
|
|
MPI_Comm comm, rdft_kind kind, unsigned flags)
|
|
{
|
|
int n_pes, i;
|
|
dtensor *sz;
|
|
R *cr = (R *) c;
|
|
|
|
XM(init)();
|
|
|
|
if (howmany < 0 || rnk < 2) return 0;
|
|
for (i = 0; i < rnk; ++i)
|
|
if (dims0[i].n < 1 || dims0[i].ib < 0 || dims0[i].ob < 0)
|
|
return 0;
|
|
|
|
MPI_Comm_size(comm, &n_pes);
|
|
sz = default_sz(rnk, dims0, n_pes, 1);
|
|
|
|
sz->dims[rnk-1].n = dims0[rnk-1].n / 2 + 1;
|
|
if (XM(num_blocks_total)(sz, IB) > n_pes
|
|
|| XM(num_blocks_total)(sz, OB) > n_pes) {
|
|
XM(dtensor_destroy)(sz);
|
|
return 0;
|
|
}
|
|
sz->dims[rnk-1].n = dims0[rnk-1].n;
|
|
|
|
if (kind == R2HC)
|
|
return X(mkapiplan)(0, flags,
|
|
XM(mkproblem_rdft2_d)(sz, howmany,
|
|
r, cr, comm, R2HC,
|
|
MPI_FLAGS(flags)));
|
|
else
|
|
return X(mkapiplan)(0, flags,
|
|
XM(mkproblem_rdft2_d)(sz, howmany,
|
|
cr, r, comm, HC2R,
|
|
MPI_FLAGS(flags)));
|
|
}
|
|
|
|
X(plan) XM(plan_many_dft_r2c)(int rnk, const ptrdiff_t *n,
|
|
ptrdiff_t howmany,
|
|
ptrdiff_t iblock, ptrdiff_t oblock,
|
|
R *in, C *out,
|
|
MPI_Comm comm, unsigned flags)
|
|
{
|
|
XM(ddim) *dims = simple_dims(rnk, n);
|
|
X(plan) pln;
|
|
|
|
if (rnk == 1) {
|
|
dims[0].ib = iblock;
|
|
dims[0].ob = oblock;
|
|
}
|
|
else if (rnk > 1) {
|
|
dims[0 != (flags & FFTW_MPI_TRANSPOSED_IN)].ib = iblock;
|
|
dims[0 != (flags & FFTW_MPI_TRANSPOSED_OUT)].ob = oblock;
|
|
}
|
|
|
|
pln = plan_guru_rdft2(rnk,dims,howmany, in,out, comm, R2HC, flags);
|
|
X(ifree)(dims);
|
|
return pln;
|
|
}
|
|
|
|
X(plan) XM(plan_many_dft_c2r)(int rnk, const ptrdiff_t *n,
|
|
ptrdiff_t howmany,
|
|
ptrdiff_t iblock, ptrdiff_t oblock,
|
|
C *in, R *out,
|
|
MPI_Comm comm, unsigned flags)
|
|
{
|
|
XM(ddim) *dims = simple_dims(rnk, n);
|
|
X(plan) pln;
|
|
|
|
if (rnk == 1) {
|
|
dims[0].ib = iblock;
|
|
dims[0].ob = oblock;
|
|
}
|
|
else if (rnk > 1) {
|
|
dims[0 != (flags & FFTW_MPI_TRANSPOSED_IN)].ib = iblock;
|
|
dims[0 != (flags & FFTW_MPI_TRANSPOSED_OUT)].ob = oblock;
|
|
}
|
|
|
|
pln = plan_guru_rdft2(rnk,dims,howmany, out,in, comm, HC2R, flags);
|
|
X(ifree)(dims);
|
|
return pln;
|
|
}
|
|
|
|
X(plan) XM(plan_dft_r2c)(int rnk, const ptrdiff_t *n, R *in, C *out,
|
|
MPI_Comm comm, unsigned flags)
|
|
{
|
|
return XM(plan_many_dft_r2c)(rnk, n, 1,
|
|
FFTW_MPI_DEFAULT_BLOCK,
|
|
FFTW_MPI_DEFAULT_BLOCK,
|
|
in, out, comm, flags);
|
|
}
|
|
|
|
X(plan) XM(plan_dft_r2c_2d)(ptrdiff_t nx, ptrdiff_t ny, R *in, C *out,
|
|
MPI_Comm comm, unsigned flags)
|
|
{
|
|
ptrdiff_t n[2];
|
|
n[0] = nx; n[1] = ny;
|
|
return XM(plan_dft_r2c)(2, n, in, out, comm, flags);
|
|
}
|
|
|
|
X(plan) XM(plan_dft_r2c_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz,
|
|
R *in, C *out, MPI_Comm comm, unsigned flags)
|
|
{
|
|
ptrdiff_t n[3];
|
|
n[0] = nx; n[1] = ny; n[2] = nz;
|
|
return XM(plan_dft_r2c)(3, n, in, out, comm, flags);
|
|
}
|
|
|
|
X(plan) XM(plan_dft_c2r)(int rnk, const ptrdiff_t *n, C *in, R *out,
|
|
MPI_Comm comm, unsigned flags)
|
|
{
|
|
return XM(plan_many_dft_c2r)(rnk, n, 1,
|
|
FFTW_MPI_DEFAULT_BLOCK,
|
|
FFTW_MPI_DEFAULT_BLOCK,
|
|
in, out, comm, flags);
|
|
}
|
|
|
|
X(plan) XM(plan_dft_c2r_2d)(ptrdiff_t nx, ptrdiff_t ny, C *in, R *out,
|
|
MPI_Comm comm, unsigned flags)
|
|
{
|
|
ptrdiff_t n[2];
|
|
n[0] = nx; n[1] = ny;
|
|
return XM(plan_dft_c2r)(2, n, in, out, comm, flags);
|
|
}
|
|
|
|
X(plan) XM(plan_dft_c2r_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz,
|
|
C *in, R *out, MPI_Comm comm, unsigned flags)
|
|
{
|
|
ptrdiff_t n[3];
|
|
n[0] = nx; n[1] = ny; n[2] = nz;
|
|
return XM(plan_dft_c2r)(3, n, in, out, comm, flags);
|
|
}
|
|
|
|
/*************************************************************************/
|
|
/* New-array execute functions */
|
|
|
|
void XM(execute_dft)(const X(plan) p, C *in, C *out) {
|
|
/* internally, MPI plans are just rdft plans */
|
|
X(execute_r2r)(p, (R*) in, (R*) out);
|
|
}
|
|
|
|
void XM(execute_dft_r2c)(const X(plan) p, R *in, C *out) {
|
|
/* internally, MPI plans are just rdft plans */
|
|
X(execute_r2r)(p, in, (R*) out);
|
|
}
|
|
|
|
void XM(execute_dft_c2r)(const X(plan) p, C *in, R *out) {
|
|
/* internally, MPI plans are just rdft plans */
|
|
X(execute_r2r)(p, (R*) in, out);
|
|
}
|
|
|
|
void XM(execute_r2r)(const X(plan) p, R *in, R *out) {
|
|
/* internally, MPI plans are just rdft plans */
|
|
X(execute_r2r)(p, in, out);
|
|
}
|