mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-18 02:25:11 +00:00
54e93db207
not reliable yet
212 lines
4.9 KiB
C
212 lines
4.9 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
|
|
#include "kernel/ifftw.h"
|
|
|
|
/***************************************************************************/
|
|
|
|
/* Rader's algorithm requires lots of modular arithmetic, and if we
|
|
aren't careful we can have errors due to integer overflows. */
|
|
|
|
/* Compute (x * y) mod p, but watch out for integer overflows; we must
|
|
have 0 <= {x, y} < p.
|
|
|
|
If overflow is common, this routine is somewhat slower than
|
|
e.g. using 'long long' arithmetic. However, it has the advantage
|
|
of working when INT is 64 bits, and is also faster when overflow is
|
|
rare. FFTW calls this via the MULMOD macro, which further
|
|
optimizes for the case of small integers.
|
|
*/
|
|
|
|
#define ADD_MOD(x, y, p) ((x) >= (p) - (y)) ? ((x) + ((y) - (p))) : ((x) + (y))
|
|
|
|
INT X(safe_mulmod)(INT x, INT y, INT p)
|
|
{
|
|
INT r;
|
|
|
|
if (y > x)
|
|
return X(safe_mulmod)(y, x, p);
|
|
|
|
A(0 <= y && x < p);
|
|
|
|
r = 0;
|
|
while (y) {
|
|
r = ADD_MOD(r, x*(y&1), p); y >>= 1;
|
|
x = ADD_MOD(x, x, p);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/***************************************************************************/
|
|
|
|
/* Compute n^m mod p, where m >= 0 and p > 0. If we really cared, we
|
|
could make this tail-recursive. */
|
|
|
|
INT X(power_mod)(INT n, INT m, INT p)
|
|
{
|
|
A(p > 0);
|
|
if (m == 0)
|
|
return 1;
|
|
else if (m % 2 == 0) {
|
|
INT x = X(power_mod)(n, m / 2, p);
|
|
return MULMOD(x, x, p);
|
|
}
|
|
else
|
|
return MULMOD(n, X(power_mod)(n, m - 1, p), p);
|
|
}
|
|
|
|
/* the following two routines were contributed by Greg Dionne. */
|
|
static INT get_prime_factors(INT n, INT *primef)
|
|
{
|
|
INT i;
|
|
INT size = 0;
|
|
|
|
A(n % 2 == 0); /* this routine is designed only for even n */
|
|
primef[size++] = (INT)2;
|
|
do {
|
|
n >>= 1;
|
|
} while ((n & 1) == 0);
|
|
|
|
if (n == 1)
|
|
return size;
|
|
|
|
for (i = 3; i * i <= n; i += 2)
|
|
if (!(n % i)) {
|
|
primef[size++] = i;
|
|
do {
|
|
n /= i;
|
|
} while (!(n % i));
|
|
}
|
|
if (n == 1)
|
|
return size;
|
|
primef[size++] = n;
|
|
return size;
|
|
}
|
|
|
|
INT X(find_generator)(INT p)
|
|
{
|
|
INT n, i, size;
|
|
INT primef[16]; /* smallest number = 32589158477190044730 > 2^64 */
|
|
INT pm1 = p - 1;
|
|
|
|
if (p == 2)
|
|
return 1;
|
|
|
|
size = get_prime_factors(pm1, primef);
|
|
n = 2;
|
|
for (i = 0; i < size; i++)
|
|
if (X(power_mod)(n, pm1 / primef[i], p) == 1) {
|
|
i = -1;
|
|
n++;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/* Return first prime divisor of n (It would be at best slightly faster to
|
|
search a static table of primes; there are 6542 primes < 2^16.) */
|
|
INT X(first_divisor)(INT n)
|
|
{
|
|
INT i;
|
|
if (n <= 1)
|
|
return n;
|
|
if (n % 2 == 0)
|
|
return 2;
|
|
for (i = 3; i*i <= n; i += 2)
|
|
if (n % i == 0)
|
|
return i;
|
|
return n;
|
|
}
|
|
|
|
int X(is_prime)(INT n)
|
|
{
|
|
return(n > 1 && X(first_divisor)(n) == n);
|
|
}
|
|
|
|
INT X(next_prime)(INT n)
|
|
{
|
|
while (!X(is_prime)(n)) ++n;
|
|
return n;
|
|
}
|
|
|
|
int X(factors_into)(INT n, const INT *primes)
|
|
{
|
|
for (; *primes != 0; ++primes)
|
|
while ((n % *primes) == 0)
|
|
n /= *primes;
|
|
return (n == 1);
|
|
}
|
|
|
|
/* integer square root. Return floor(sqrt(N)) */
|
|
INT X(isqrt)(INT n)
|
|
{
|
|
INT guess, iguess;
|
|
|
|
A(n >= 0);
|
|
if (n == 0) return 0;
|
|
|
|
guess = n; iguess = 1;
|
|
|
|
do {
|
|
guess = (guess + iguess) / 2;
|
|
iguess = n / guess;
|
|
} while (guess > iguess);
|
|
|
|
return guess;
|
|
}
|
|
|
|
static INT isqrt_maybe(INT n)
|
|
{
|
|
INT guess = X(isqrt)(n);
|
|
return guess * guess == n ? guess : 0;
|
|
}
|
|
|
|
#define divides(a, b) (((b) % (a)) == 0)
|
|
INT X(choose_radix)(INT r, INT n)
|
|
{
|
|
if (r > 0) {
|
|
if (divides(r, n)) return r;
|
|
return 0;
|
|
} else if (r == 0) {
|
|
return X(first_divisor)(n);
|
|
} else {
|
|
/* r is negative. If n = (-r) * q^2, take q as the radix */
|
|
r = 0 - r;
|
|
return (n > r && divides(r, n)) ? isqrt_maybe(n / r) : 0;
|
|
}
|
|
}
|
|
|
|
/* return A mod N, works for all A including A < 0 */
|
|
INT X(modulo)(INT a, INT n)
|
|
{
|
|
A(n > 0);
|
|
if (a >= 0)
|
|
return a % n;
|
|
else
|
|
return (n - 1) - ((-(a + (INT)1)) % n);
|
|
}
|
|
|
|
/* TRUE if N factors into small primes */
|
|
int X(factors_into_small_primes)(INT n)
|
|
{
|
|
static const INT primes[] = { 2, 3, 5, 0 };
|
|
return X(factors_into)(n, primes);
|
|
}
|