mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-24 05:25:12 +00:00
54e93db207
not reliable yet
240 lines
6.7 KiB
C
240 lines
6.7 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
|
|
|
|
/* solvers/plans for vectors of small DFT's that cannot be done
|
|
in-place directly. Use a rank-0 plan to rearrange the data
|
|
before or after the transform. Can also change an out-of-place
|
|
plan into a copy + in-place (where the in-place transform
|
|
is e.g. unit stride). */
|
|
|
|
/* FIXME: merge with rank-geq2.c(?), since this is just a special case
|
|
of a rank split where the first/second transform has rank 0. */
|
|
|
|
#include "dft/dft.h"
|
|
|
|
typedef problem *(*mkcld_t) (const problem_dft *p);
|
|
|
|
typedef struct {
|
|
dftapply apply;
|
|
problem *(*mkcld)(const problem_dft *p);
|
|
const char *nam;
|
|
} ndrct_adt;
|
|
|
|
typedef struct {
|
|
solver super;
|
|
const ndrct_adt *adt;
|
|
} S;
|
|
|
|
typedef struct {
|
|
plan_dft super;
|
|
plan *cldcpy, *cld;
|
|
const S *slv;
|
|
} P;
|
|
|
|
/*-----------------------------------------------------------------------*/
|
|
/* first rearrange, then transform */
|
|
static void apply_before(const plan *ego_, R *ri, R *ii, R *ro, R *io)
|
|
{
|
|
const P *ego = (const P *) ego_;
|
|
|
|
{
|
|
plan_dft *cldcpy = (plan_dft *) ego->cldcpy;
|
|
cldcpy->apply(ego->cldcpy, ri, ii, ro, io);
|
|
}
|
|
{
|
|
plan_dft *cld = (plan_dft *) ego->cld;
|
|
cld->apply(ego->cld, ro, io, ro, io);
|
|
}
|
|
}
|
|
|
|
static problem *mkcld_before(const problem_dft *p)
|
|
{
|
|
return X(mkproblem_dft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_OS),
|
|
X(tensor_copy_inplace)(p->vecsz, INPLACE_OS),
|
|
p->ro, p->io, p->ro, p->io);
|
|
}
|
|
|
|
static const ndrct_adt adt_before =
|
|
{
|
|
apply_before, mkcld_before, "dft-indirect-before"
|
|
};
|
|
|
|
/*-----------------------------------------------------------------------*/
|
|
/* first transform, then rearrange */
|
|
|
|
static void apply_after(const plan *ego_, R *ri, R *ii, R *ro, R *io)
|
|
{
|
|
const P *ego = (const P *) ego_;
|
|
|
|
{
|
|
plan_dft *cld = (plan_dft *) ego->cld;
|
|
cld->apply(ego->cld, ri, ii, ri, ii);
|
|
}
|
|
{
|
|
plan_dft *cldcpy = (plan_dft *) ego->cldcpy;
|
|
cldcpy->apply(ego->cldcpy, ri, ii, ro, io);
|
|
}
|
|
}
|
|
|
|
static problem *mkcld_after(const problem_dft *p)
|
|
{
|
|
return X(mkproblem_dft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_IS),
|
|
X(tensor_copy_inplace)(p->vecsz, INPLACE_IS),
|
|
p->ri, p->ii, p->ri, p->ii);
|
|
}
|
|
|
|
static const ndrct_adt adt_after =
|
|
{
|
|
apply_after, mkcld_after, "dft-indirect-after"
|
|
};
|
|
|
|
/*-----------------------------------------------------------------------*/
|
|
static void destroy(plan *ego_)
|
|
{
|
|
P *ego = (P *) ego_;
|
|
X(plan_destroy_internal)(ego->cld);
|
|
X(plan_destroy_internal)(ego->cldcpy);
|
|
}
|
|
|
|
static void awake(plan *ego_, enum wakefulness wakefulness)
|
|
{
|
|
P *ego = (P *) ego_;
|
|
X(plan_awake)(ego->cldcpy, wakefulness);
|
|
X(plan_awake)(ego->cld, wakefulness);
|
|
}
|
|
|
|
static void print(const plan *ego_, printer *p)
|
|
{
|
|
const P *ego = (const P *) ego_;
|
|
const S *s = ego->slv;
|
|
p->print(p, "(%s%(%p%)%(%p%))", s->adt->nam, ego->cld, ego->cldcpy);
|
|
}
|
|
|
|
static int applicable0(const solver *ego_, const problem *p_,
|
|
const planner *plnr)
|
|
{
|
|
const S *ego = (const S *) ego_;
|
|
const problem_dft *p = (const problem_dft *) p_;
|
|
return (1
|
|
&& FINITE_RNK(p->vecsz->rnk)
|
|
|
|
/* problem must be a nontrivial transform, not just a copy */
|
|
&& p->sz->rnk > 0
|
|
|
|
&& (0
|
|
|
|
/* problem must be in-place & require some
|
|
rearrangement of the data; to prevent
|
|
infinite loops with indirect-transpose, we
|
|
further require that at least some transform
|
|
strides must decrease */
|
|
|| (p->ri == p->ro
|
|
&& !X(tensor_inplace_strides2)(p->sz, p->vecsz)
|
|
&& X(tensor_strides_decrease)(
|
|
p->sz, p->vecsz,
|
|
ego->adt->apply == apply_after ?
|
|
INPLACE_IS : INPLACE_OS))
|
|
|
|
/* or problem must be out of place, transforming
|
|
from stride 1/2 to bigger stride, for apply_after */
|
|
|| (p->ri != p->ro && ego->adt->apply == apply_after
|
|
&& !NO_DESTROY_INPUTP(plnr)
|
|
&& X(tensor_min_istride)(p->sz) <= 2
|
|
&& X(tensor_min_ostride)(p->sz) > 2)
|
|
|
|
/* or problem must be out of place, transforming
|
|
to stride 1/2 from bigger stride, for apply_before */
|
|
|| (p->ri != p->ro && ego->adt->apply == apply_before
|
|
&& X(tensor_min_ostride)(p->sz) <= 2
|
|
&& X(tensor_min_istride)(p->sz) > 2)
|
|
)
|
|
);
|
|
}
|
|
|
|
static int applicable(const solver *ego_, const problem *p_,
|
|
const planner *plnr)
|
|
{
|
|
if (!applicable0(ego_, p_, plnr)) return 0;
|
|
{
|
|
const problem_dft *p = (const problem_dft *) p_;
|
|
if (NO_INDIRECT_OP_P(plnr) && p->ri != p->ro) return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
|
{
|
|
const problem_dft *p = (const problem_dft *) p_;
|
|
const S *ego = (const S *) ego_;
|
|
P *pln;
|
|
plan *cld = 0, *cldcpy = 0;
|
|
|
|
static const plan_adt padt = {
|
|
X(dft_solve), awake, print, destroy
|
|
};
|
|
|
|
if (!applicable(ego_, p_, plnr))
|
|
return (plan *) 0;
|
|
|
|
cldcpy =
|
|
X(mkplan_d)(plnr,
|
|
X(mkproblem_dft_d)(X(mktensor_0d)(),
|
|
X(tensor_append)(p->vecsz, p->sz),
|
|
p->ri, p->ii, p->ro, p->io));
|
|
|
|
if (!cldcpy) goto nada;
|
|
|
|
cld = X(mkplan_f_d)(plnr, ego->adt->mkcld(p), NO_BUFFERING, 0, 0);
|
|
if (!cld) goto nada;
|
|
|
|
pln = MKPLAN_DFT(P, &padt, ego->adt->apply);
|
|
pln->cld = cld;
|
|
pln->cldcpy = cldcpy;
|
|
pln->slv = ego;
|
|
X(ops_add)(&cld->ops, &cldcpy->ops, &pln->super.super.ops);
|
|
|
|
return &(pln->super.super);
|
|
|
|
nada:
|
|
X(plan_destroy_internal)(cld);
|
|
X(plan_destroy_internal)(cldcpy);
|
|
return (plan *)0;
|
|
}
|
|
|
|
static solver *mksolver(const ndrct_adt *adt)
|
|
{
|
|
static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
|
|
S *slv = MKSOLVER(S, &sadt);
|
|
slv->adt = adt;
|
|
return &(slv->super);
|
|
}
|
|
|
|
void X(dft_indirect_register)(planner *p)
|
|
{
|
|
unsigned i;
|
|
static const ndrct_adt *const adts[] = {
|
|
&adt_before, &adt_after
|
|
};
|
|
|
|
for (i = 0; i < sizeof(adts) / sizeof(adts[0]); ++i)
|
|
REGISTER_SOLVER(p, mksolver(adts[i]));
|
|
}
|