furnace/src/engine/platform/sound/ymz280b.cpp

786 lines
19 KiB
C++

// license:BSD-3-Clause
// copyright-holders:Aaron Giles
/*
Yamaha YMZ280B driver
by Aaron Giles
YMZ280B 8-Channel PCMD8 PCM/ADPCM Decoder
Features as listed in LSI-4MZ280B3 data sheet:
Voice data stored in external memory can be played back simultaneously for up to eight voices
Voice data format can be selected from 4-bit ADPCM, 8-bit PCM and 16-bit PCM
Control of voice data external memory
Up to 16M bytes of ROM or SRAM (x 8 bits, access time 150ms max) can be connected
Continuous access is possible
Loop playback between selective addresses is possible
Voice data playback frequency control
4-bit ADPCM ................ 0.172 to 44.1kHz in 256 steps
8-bit PCM, 16-bit PCM ...... 0.172 to 88.2kHz in 512 steps
256 steps total level and 16 steps panpot can be set
Voice signal is output in stereo 16-bit 2's complement MSB-first format
TODO:
- Is memory handling 100% correct? At the moment, Konami firebeat.c is the only
hardware currently emulated that uses external handlers.
It also happens to be the only one using 16-bit PCM.
Some other drivers (eg. bishi.cpp, bfm_sc4/5.cpp) also use ROM readback.
*/
#include "ymz280b.h"
#include <assert.h>
#include <stdio.h>
#include <string.h>
#define MAX_SAMPLE_CHUNK 10000
static constexpr unsigned FRAC_BITS = 8;
static constexpr s32 FRAC_ONE = 1 << FRAC_BITS;
/* step size index shift table */
static constexpr int index_scale[8] = { 0x0e6, 0x0e6, 0x0e6, 0x0e6, 0x133, 0x199, 0x200, 0x266 };
/* lookup table for the precomputed difference */
static int diff_lookup[16];
void ymz280b_device::update_step(struct YMZ280BVoice *voice)
{
int frequency;
/* compute the frequency */
if (voice->mode == 1)
frequency = voice->fnum & 0x0ff;
else
frequency = voice->fnum & 0x1ff;
voice->output_step = frequency + 1; // ((fnum + 1) * (input clock / 384)) / 256
}
void ymz280b_device::update_volumes(struct YMZ280BVoice *voice)
{
if (voice->pan == 8)
{
voice->output_left = voice->level;
voice->output_right = voice->level;
}
else if (voice->pan < 8)
{
voice->output_left = voice->level;
/* pan 1 is hard-left, what's pan 0? for now assume same as pan 1 */
voice->output_right = (voice->pan == 0) ? 0 : voice->level * (voice->pan - 1) / 7;
}
else
{
voice->output_left = voice->level * (15 - voice->pan) / 7;
voice->output_right = voice->level;
}
}
/**********************************************************************************************
compute_tables -- compute the difference tables
***********************************************************************************************/
static void compute_tables()
{
/* loop over all nibbles and compute the difference */
for (int nib = 0; nib < 16; nib++)
{
int value = (nib & 0x07) * 2 + 1;
diff_lookup[nib] = (nib & 0x08) ? -value : value;
}
}
/**********************************************************************************************
generate_adpcm -- general ADPCM decoding routine
***********************************************************************************************/
int ymz280b_device::generate_adpcm(struct YMZ280BVoice *voice, s16 *buffer, int samples)
{
u32 position = voice->position;
int signal = voice->signal;
int step = voice->step;
int val;
/* two cases: first cases is non-looping */
if (!voice->looping)
{
/* loop while we still have samples to generate */
while (samples)
{
/* compute the new amplitude and update the current step */
val = m_ext_mem[position / 2] >> ((~position & 1) << 2);
signal += (step * diff_lookup[val & 15]) / 8;
/* clamp to the maximum */
if (signal > 32767)
signal = 32767;
else if (signal < -32768)
signal = -32768;
/* adjust the step size and clamp */
step = (step * index_scale[val & 7]) >> 8;
if (step > 0x6000)
step = 0x6000;
else if (step < 0x7f)
step = 0x7f;
/* output to the buffer, scaling by the volume */
*buffer++ = signal;
samples--;
/* next! */
position++;
if (position >= voice->stop)
{
voice->ended = true;
break;
}
}
}
/* second case: looping */
else
{
/* loop while we still have samples to generate */
while (samples)
{
/* compute the new amplitude and update the current step */
val = m_ext_mem[position / 2] >> ((~position & 1) << 2);
signal += (step * diff_lookup[val & 15]) / 8;
/* clamp to the maximum */
if (signal > 32767)
signal = 32767;
else if (signal < -32768)
signal = -32768;
/* adjust the step size and clamp */
step = (step * index_scale[val & 7]) >> 8;
if (step > 0x6000)
step = 0x6000;
else if (step < 0x7f)
step = 0x7f;
/* output to the buffer, scaling by the volume */
*buffer++ = signal;
samples--;
/* next! */
position++;
if (position == voice->loop_start && voice->loop_count == 0)
{
voice->loop_signal = signal;
voice->loop_step = step;
}
if (position >= voice->loop_end)
{
if (voice->keyon)
{
position = voice->loop_start;
signal = voice->loop_signal;
step = voice->loop_step;
voice->loop_count++;
}
}
if (position >= voice->stop)
{
voice->ended = true;
break;
}
}
}
/* update the parameters */
voice->position = position;
voice->signal = signal;
voice->step = step;
return samples;
}
/**********************************************************************************************
generate_pcm8 -- general 8-bit PCM decoding routine
***********************************************************************************************/
int ymz280b_device::generate_pcm8(struct YMZ280BVoice *voice, s16 *buffer, int samples)
{
u32 position = voice->position;
int val;
/* two cases: first cases is non-looping */
if (!voice->looping)
{
/* loop while we still have samples to generate */
while (samples)
{
/* fetch the current value */
val = m_ext_mem[position / 2];
/* output to the buffer, scaling by the volume */
*buffer++ = (s8)val * 256;
samples--;
/* next! */
position += 2;
if (position >= voice->stop)
{
voice->ended = true;
break;
}
}
}
/* second case: looping */
else
{
/* loop while we still have samples to generate */
while (samples)
{
/* fetch the current value */
val = m_ext_mem[position / 2];
/* output to the buffer, scaling by the volume */
*buffer++ = (s8)val * 256;
samples--;
/* next! */
position += 2;
if (position >= voice->loop_end)
{
if (voice->keyon)
position = voice->loop_start;
}
if (position >= voice->stop)
{
voice->ended = true;
break;
}
}
}
/* update the parameters */
voice->position = position;
return samples;
}
/**********************************************************************************************
generate_pcm16 -- general 16-bit PCM decoding routine
***********************************************************************************************/
int ymz280b_device::generate_pcm16(struct YMZ280BVoice *voice, s16 *buffer, int samples)
{
u32 position = voice->position;
int val;
/* two cases: first cases is non-looping */
if (!voice->looping)
{
/* loop while we still have samples to generate */
while (samples)
{
/* fetch the current value */
val = (s16)((m_ext_mem[position / 2 + 1] << 8) + m_ext_mem[position / 2 + 0]);
/* output to the buffer, scaling by the volume */
*buffer++ = val;
samples--;
/* next! */
position += 4;
if (position >= voice->stop)
{
voice->ended = true;
break;
}
}
}
/* second case: looping */
else
{
/* loop while we still have samples to generate */
while (samples)
{
/* fetch the current value */
val = (s16)((m_ext_mem[position / 2 + 1] << 8) + m_ext_mem[position / 2 + 0]);
/* output to the buffer, scaling by the volume */
*buffer++ = val;
samples--;
/* next! */
position += 4;
if (position >= voice->loop_end)
{
if (voice->keyon)
position = voice->loop_start;
}
if (position >= voice->stop)
{
voice->ended = true;
break;
}
}
}
/* update the parameters */
voice->position = position;
return samples;
}
//-------------------------------------------------
// sound_stream_update - handle a stream update
//-------------------------------------------------
void ymz280b_device::sound_stream_update(s16 **outputs, int samples)
{
int v;
/* loop over voices */
for (v = 0; v < 8; v++)
{
struct YMZ280BVoice *voice = &m_voice[v];
s16 prev = voice->last_sample;
s16 curr = voice->curr_sample;
s16 *curr_data = m_scratch.get();
s16 *ldest = outputs[v*2];
s16 *rdest = outputs[v*2+1];
s32 sampindex = 0;
u32 new_samples, samples_left;
u32 final_pos;
int remaining = samples;
int lvol = voice->output_left;
int rvol = voice->output_right;
/* quick out if we're not playing and we're at 0 */
if (!voice->playing && curr == 0 && prev == 0)
{
memset(ldest, 0, samples * sizeof(s16));
memset(rdest, 0, samples * sizeof(s16));
/* make sure next sound plays immediately */
voice->output_pos = FRAC_ONE;
continue;
}
/* finish off the current sample */
/* interpolate */
while (remaining > 0 && voice->output_pos < FRAC_ONE)
{
s32 interp_sample = ((s32(prev) * (FRAC_ONE - voice->output_pos)) + (s32(curr) * voice->output_pos)) >> FRAC_BITS;
ldest[sampindex] = (s16)(interp_sample * lvol / 256);
rdest[sampindex] = (s16)(interp_sample * rvol / 256);
sampindex++;
voice->output_pos += voice->output_step;
remaining--;
}
/* if we're over, continue; otherwise, we're done */
if (voice->output_pos >= FRAC_ONE)
voice->output_pos -= FRAC_ONE;
else
continue;
/* compute how many new samples we need */
final_pos = voice->output_pos + remaining * voice->output_step;
new_samples = (final_pos + FRAC_ONE) >> FRAC_BITS;
if (new_samples > MAX_SAMPLE_CHUNK)
new_samples = MAX_SAMPLE_CHUNK;
samples_left = new_samples;
/* generate them into our buffer */
switch (voice->playing << 7 | voice->mode)
{
case 0x81: samples_left = generate_adpcm(voice, m_scratch.get(), new_samples); break;
case 0x82: samples_left = generate_pcm8(voice, m_scratch.get(), new_samples); break;
case 0x83: samples_left = generate_pcm16(voice, m_scratch.get(), new_samples); break;
default: samples_left = 0; memset(m_scratch.get(), 0, new_samples * sizeof(m_scratch[0])); break;
}
if (samples_left || voice->ended)
{
voice->ended = false;
/* if there are leftovers, ramp back to 0 */
int base = new_samples - samples_left;
int t = (base == 0) ? curr : m_scratch[base - 1];
for (u32 i = 0; i < samples_left; i++)
{
if (t < 0) t = -((-t * 15) >> 4);
else if (t > 0) t = (t * 15) >> 4;
m_scratch[base + i] = t;
}
/* if we hit the end and IRQs are enabled, signal it */
if (base != 0)
{
voice->playing = 0;
/* set update_irq_state_timer. IRQ is signaled on next CPU execution. */
voice->irq_schedule = 1;
}
}
/* advance forward one sample */
prev = curr;
curr = *curr_data++;
/* then sample-rate convert with linear interpolation */
while (remaining > 0)
{
/* interpolate */
while (remaining > 0 && voice->output_pos < FRAC_ONE)
{
int interp_sample = ((s32(prev) * (FRAC_ONE - voice->output_pos)) + (s32(curr) * voice->output_pos)) >> FRAC_BITS;
ldest[sampindex] = (s16)(interp_sample * lvol / 256);
rdest[sampindex] = (s16)(interp_sample * rvol / 256);
sampindex++;
voice->output_pos += voice->output_step;
remaining--;
}
/* if we're over, grab the next samples */
if (voice->output_pos >= FRAC_ONE)
{
voice->output_pos -= FRAC_ONE;
prev = curr;
curr = *curr_data++;
}
}
/* remember the last samples */
voice->last_sample = prev;
voice->curr_sample = curr;
}
}
//-------------------------------------------------
// device_start - device-specific startup
//-------------------------------------------------
void ymz280b_device::device_start(u8 *ext_mem)
{
m_ext_mem = ext_mem;
/* compute ADPCM tables */
compute_tables();
/* allocate memory */
assert(MAX_SAMPLE_CHUNK < 0x10000);
m_scratch = std::make_unique<s16[]>(MAX_SAMPLE_CHUNK);
for (auto & elem : m_voice)
{
update_step(&elem);
}
}
//-------------------------------------------------
// device_reset - device-specific reset
//-------------------------------------------------
void ymz280b_device::device_reset()
{
/* initial clear registers */
for (int i = 0xff; i >= 0; i--)
{
m_current_register = i;
write_to_register(0);
}
m_current_register = 0;
m_status_register = 0;
m_ext_mem_address = 0;
/* clear other voice parameters */
for (auto &elem : m_voice)
{
struct YMZ280BVoice *voice = &elem;
voice->curr_sample = 0;
voice->last_sample = 0;
voice->output_pos = FRAC_ONE;
voice->playing = 0;
}
}
/**********************************************************************************************
write_to_register -- handle a write to the current register
***********************************************************************************************/
void ymz280b_device::write_to_register(int data)
{
struct YMZ280BVoice *voice;
int i;
/* lower registers follow a pattern */
if (m_current_register < 0x80)
{
voice = &m_voice[(m_current_register >> 2) & 7];
switch (m_current_register & 0xe3)
{
case 0x00: /* pitch low 8 bits */
voice->fnum = (voice->fnum & 0x100) | (data & 0xff);
update_step(voice);
break;
case 0x01: /* pitch upper 1 bit, loop, key on, mode */
voice->fnum = (voice->fnum & 0xff) | ((data & 0x01) << 8);
voice->looping = (data & 0x10) >> 4;
if ((data & 0x60) == 0) data &= 0x7f; /* ignore mode setting and set to same state as KON=0 */
else voice->mode = (data & 0x60) >> 5;
if (!voice->keyon && (data & 0x80) && m_keyon_enable)
{
voice->playing = 1;
voice->position = voice->start;
voice->signal = voice->loop_signal = 0;
voice->step = voice->loop_step = 0x7f;
voice->loop_count = 0;
/* if update_irq_state_timer is set, cancel it. */
voice->irq_schedule = 0;
}
else if (voice->keyon && !(data & 0x80))
{
voice->playing = 0;
/* if update_irq_state_timer is set, cancel it. */
voice->irq_schedule = 0;
}
voice->keyon = (data & 0x80) >> 7;
update_step(voice);
break;
case 0x02: /* total level */
voice->level = data;
update_volumes(voice);
break;
case 0x03: /* pan */
voice->pan = data & 0x0f;
update_volumes(voice);
break;
case 0x20: /* start address high */
voice->start = (voice->start & (0x00ffff << 1)) | (data << 17);
break;
case 0x21: /* loop start address high */
voice->loop_start = (voice->loop_start & (0x00ffff << 1)) | (data << 17);
break;
case 0x22: /* loop end address high */
voice->loop_end = (voice->loop_end & (0x00ffff << 1)) | (data << 17);
break;
case 0x23: /* stop address high */
voice->stop = (voice->stop & (0x00ffff << 1)) | (data << 17);
break;
case 0x40: /* start address middle */
voice->start = (voice->start & (0xff00ff << 1)) | (data << 9);
break;
case 0x41: /* loop start address middle */
voice->loop_start = (voice->loop_start & (0xff00ff << 1)) | (data << 9);
break;
case 0x42: /* loop end address middle */
voice->loop_end = (voice->loop_end & (0xff00ff << 1)) | (data << 9);
break;
case 0x43: /* stop address middle */
voice->stop = (voice->stop & (0xff00ff << 1)) | (data << 9);
break;
case 0x60: /* start address low */
voice->start = (voice->start & (0xffff00 << 1)) | (data << 1);
break;
case 0x61: /* loop start address low */
voice->loop_start = (voice->loop_start & (0xffff00 << 1)) | (data << 1);
break;
case 0x62: /* loop end address low */
voice->loop_end = (voice->loop_end & (0xffff00 << 1)) | (data << 1);
break;
case 0x63: /* stop address low */
voice->stop = (voice->stop & (0xffff00 << 1)) | (data << 1);
break;
default:
if (data != 0)
printf("YMZ280B: unknown register write %02X = %02X\n", m_current_register, data);
break;
}
}
/* upper registers are special */
else
{
switch (m_current_register)
{
/* DSP related (not implemented yet) */
case 0x80: // d0-2: DSP Rch, d3: enable Rch (0: yes, 1: no), d4-6: DSP Lch, d7: enable Lch (0: yes, 1: no)
case 0x81: // d0: enable control of $82 (0: yes, 1: no)
case 0x82: // DSP data
//printf("YMZ280B: DSP register write %02X = %02X\n", m_current_register, data);
break;
case 0x84: /* ROM readback / RAM write (high) */
m_ext_mem_address_hi = data << 16;
break;
case 0x85: /* ROM readback / RAM write (middle) */
m_ext_mem_address_mid = data << 8;
break;
case 0x86: /* ROM readback / RAM write (low) -> update latch */
m_ext_mem_address = m_ext_mem_address_hi | m_ext_mem_address_mid | data;
if (m_ext_mem_enable)
m_ext_readlatch = m_ext_mem[m_ext_mem_address];
break;
case 0x87: /* RAM write */
if (m_ext_mem_enable)
{
m_ext_mem[m_ext_mem_address] = data;
m_ext_mem_address = (m_ext_mem_address + 1) & 0xffffff;
}
break;
case 0xfe: /* IRQ mask */
m_irq_mask = data;
break;
case 0xff: /* IRQ enable, test, etc */
m_ext_mem_enable = (data & 0x40) >> 6;
m_irq_enable = (data & 0x10) >> 4;
if (m_keyon_enable && !(data & 0x80))
{
for (i = 0; i < 8; i++)
{
m_voice[i].playing = 0;
/* if update_irq_state_timer is set, cancel it. */
m_voice[i].irq_schedule = 0;
}
}
else if (!m_keyon_enable && (data & 0x80))
{
for (i = 0; i < 8; i++)
{
if (m_voice[i].keyon && m_voice[i].looping)
m_voice[i].playing = 1;
}
}
m_keyon_enable = (data & 0x80) >> 7;
break;
default:
if (data != 0)
printf("YMZ280B: unknown register write %02X = %02X\n", m_current_register, data);
break;
}
}
}
/**********************************************************************************************
compute_status -- determine the status bits
***********************************************************************************************/
int ymz280b_device::compute_status()
{
u8 result;
result = m_status_register;
/* clear the IRQ state */
m_status_register = 0;
return result;
}
/**********************************************************************************************
read/write -- handle external accesses
***********************************************************************************************/
u8 ymz280b_device::read(offs_t offset)
{
if ((offset & 1) == 0)
{
if (!m_ext_mem_enable)
return 0xff;
/* read from external memory */
u8 ret = m_ext_readlatch;
m_ext_readlatch = m_ext_mem[m_ext_mem_address];
m_ext_mem_address = (m_ext_mem_address + 1) & 0xffffff;
return ret;
}
else
return compute_status();
}
void ymz280b_device::write(offs_t offset, u8 data)
{
if ((offset & 1) == 0)
m_current_register = data;
else
{
write_to_register(data);
}
}
ymz280b_device::ymz280b_device()
: m_current_register(0)
, m_status_register(0)
, m_irq_mask(0)
, m_irq_enable(0)
, m_keyon_enable(0)
, m_ext_mem_enable(0)
, m_ext_readlatch(0)
, m_ext_mem_address_hi(0)
, m_ext_mem_address_mid(0)
, m_ext_mem_address(0)
{
memset(m_voice, 0, sizeof(m_voice));
}