mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-05 10:47:26 +00:00
54e93db207
not reliable yet
327 lines
8.7 KiB
C
327 lines
8.7 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
#include "dft/dft.h"
|
|
|
|
/*
|
|
* Compute transforms of prime sizes using Rader's trick: turn them
|
|
* into convolutions of size n - 1, which you then perform via a pair
|
|
* of FFTs.
|
|
*/
|
|
|
|
typedef struct {
|
|
solver super;
|
|
} S;
|
|
|
|
typedef struct {
|
|
plan_dft super;
|
|
|
|
plan *cld1, *cld2;
|
|
R *omega;
|
|
INT n, g, ginv;
|
|
INT is, os;
|
|
plan *cld_omega;
|
|
} P;
|
|
|
|
static rader_tl *omegas = 0;
|
|
|
|
static R *mkomega(enum wakefulness wakefulness, plan *p_, INT n, INT ginv)
|
|
{
|
|
plan_dft *p = (plan_dft *) p_;
|
|
R *omega;
|
|
INT i, gpower;
|
|
trigreal scale;
|
|
triggen *t;
|
|
|
|
if ((omega = X(rader_tl_find)(n, n, ginv, omegas)))
|
|
return omega;
|
|
|
|
omega = (R *)MALLOC(sizeof(R) * (n - 1) * 2, TWIDDLES);
|
|
|
|
scale = n - 1.0; /* normalization for convolution */
|
|
|
|
t = X(mktriggen)(wakefulness, n);
|
|
for (i = 0, gpower = 1; i < n-1; ++i, gpower = MULMOD(gpower, ginv, n)) {
|
|
trigreal w[2];
|
|
t->cexpl(t, gpower, w);
|
|
omega[2*i] = w[0] / scale;
|
|
omega[2*i+1] = FFT_SIGN * w[1] / scale;
|
|
}
|
|
X(triggen_destroy)(t);
|
|
A(gpower == 1);
|
|
|
|
p->apply(p_, omega, omega + 1, omega, omega + 1);
|
|
|
|
X(rader_tl_insert)(n, n, ginv, omega, &omegas);
|
|
return omega;
|
|
}
|
|
|
|
static void free_omega(R *omega)
|
|
{
|
|
X(rader_tl_delete)(omega, &omegas);
|
|
}
|
|
|
|
|
|
/***************************************************************************/
|
|
|
|
/* Below, we extensively use the identity that fft(x*)* = ifft(x) in
|
|
order to share data between forward and backward transforms and to
|
|
obviate the necessity of having separate forward and backward
|
|
plans. (Although we often compute separate plans these days anyway
|
|
due to the differing strides, etcetera.)
|
|
|
|
Of course, since the new FFTW gives us separate pointers to
|
|
the real and imaginary parts, we could have instead used the
|
|
fft(r,i) = ifft(i,r) form of this identity, but it was easier to
|
|
reuse the code from our old version. */
|
|
|
|
static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
|
|
{
|
|
const P *ego = (const P *) ego_;
|
|
INT is, os;
|
|
INT k, gpower, g, r;
|
|
R *buf;
|
|
R r0 = ri[0], i0 = ii[0];
|
|
|
|
r = ego->n; is = ego->is; os = ego->os; g = ego->g;
|
|
buf = (R *) MALLOC(sizeof(R) * (r - 1) * 2, BUFFERS);
|
|
|
|
/* First, permute the input, storing in buf: */
|
|
for (gpower = 1, k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) {
|
|
R rA, iA;
|
|
rA = ri[gpower * is];
|
|
iA = ii[gpower * is];
|
|
buf[2*k] = rA; buf[2*k + 1] = iA;
|
|
}
|
|
/* gpower == g^(r-1) mod r == 1 */;
|
|
|
|
|
|
/* compute DFT of buf, storing in output (except DC): */
|
|
{
|
|
plan_dft *cld = (plan_dft *) ego->cld1;
|
|
cld->apply(ego->cld1, buf, buf+1, ro+os, io+os);
|
|
}
|
|
|
|
/* set output DC component: */
|
|
{
|
|
ro[0] = r0 + ro[os];
|
|
io[0] = i0 + io[os];
|
|
}
|
|
|
|
/* now, multiply by omega: */
|
|
{
|
|
const R *omega = ego->omega;
|
|
for (k = 0; k < r - 1; ++k) {
|
|
E rB, iB, rW, iW;
|
|
rW = omega[2*k];
|
|
iW = omega[2*k+1];
|
|
rB = ro[(k+1)*os];
|
|
iB = io[(k+1)*os];
|
|
ro[(k+1)*os] = rW * rB - iW * iB;
|
|
io[(k+1)*os] = -(rW * iB + iW * rB);
|
|
}
|
|
}
|
|
|
|
/* this will add input[0] to all of the outputs after the ifft */
|
|
ro[os] += r0;
|
|
io[os] -= i0;
|
|
|
|
/* inverse FFT: */
|
|
{
|
|
plan_dft *cld = (plan_dft *) ego->cld2;
|
|
cld->apply(ego->cld2, ro+os, io+os, buf, buf+1);
|
|
}
|
|
|
|
/* finally, do inverse permutation to unshuffle the output: */
|
|
{
|
|
INT ginv = ego->ginv;
|
|
gpower = 1;
|
|
for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, ginv, r)) {
|
|
ro[gpower * os] = buf[2*k];
|
|
io[gpower * os] = -buf[2*k+1];
|
|
}
|
|
A(gpower == 1);
|
|
}
|
|
|
|
|
|
X(ifree)(buf);
|
|
}
|
|
|
|
/***************************************************************************/
|
|
|
|
static void awake(plan *ego_, enum wakefulness wakefulness)
|
|
{
|
|
P *ego = (P *) ego_;
|
|
|
|
X(plan_awake)(ego->cld1, wakefulness);
|
|
X(plan_awake)(ego->cld2, wakefulness);
|
|
X(plan_awake)(ego->cld_omega, wakefulness);
|
|
|
|
switch (wakefulness) {
|
|
case SLEEPY:
|
|
free_omega(ego->omega);
|
|
ego->omega = 0;
|
|
break;
|
|
default:
|
|
ego->g = X(find_generator)(ego->n);
|
|
ego->ginv = X(power_mod)(ego->g, ego->n - 2, ego->n);
|
|
A(MULMOD(ego->g, ego->ginv, ego->n) == 1);
|
|
|
|
ego->omega = mkomega(wakefulness,
|
|
ego->cld_omega, ego->n, ego->ginv);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void destroy(plan *ego_)
|
|
{
|
|
P *ego = (P *) ego_;
|
|
X(plan_destroy_internal)(ego->cld_omega);
|
|
X(plan_destroy_internal)(ego->cld2);
|
|
X(plan_destroy_internal)(ego->cld1);
|
|
}
|
|
|
|
static void print(const plan *ego_, printer *p)
|
|
{
|
|
const P *ego = (const P *)ego_;
|
|
p->print(p, "(dft-rader-%D%ois=%oos=%(%p%)",
|
|
ego->n, ego->is, ego->os, ego->cld1);
|
|
if (ego->cld2 != ego->cld1)
|
|
p->print(p, "%(%p%)", ego->cld2);
|
|
if (ego->cld_omega != ego->cld1 && ego->cld_omega != ego->cld2)
|
|
p->print(p, "%(%p%)", ego->cld_omega);
|
|
p->putchr(p, ')');
|
|
}
|
|
|
|
static int applicable(const solver *ego_, const problem *p_,
|
|
const planner *plnr)
|
|
{
|
|
const problem_dft *p = (const problem_dft *) p_;
|
|
UNUSED(ego_);
|
|
return (1
|
|
&& p->sz->rnk == 1
|
|
&& p->vecsz->rnk == 0
|
|
&& CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > RADER_MAX_SLOW)
|
|
&& X(is_prime)(p->sz->dims[0].n)
|
|
|
|
/* proclaim the solver SLOW if p-1 is not easily factorizable.
|
|
Bluestein should take care of this case. */
|
|
&& CIMPLIES(NO_SLOWP(plnr), X(factors_into_small_primes)(p->sz->dims[0].n - 1))
|
|
);
|
|
}
|
|
|
|
static int mkP(P *pln, INT n, INT is, INT os, R *ro, R *io,
|
|
planner *plnr)
|
|
{
|
|
plan *cld1 = (plan *) 0;
|
|
plan *cld2 = (plan *) 0;
|
|
plan *cld_omega = (plan *) 0;
|
|
R *buf = (R *) 0;
|
|
|
|
/* initial allocation for the purpose of planning */
|
|
buf = (R *) MALLOC(sizeof(R) * (n - 1) * 2, BUFFERS);
|
|
|
|
cld1 = X(mkplan_f_d)(plnr,
|
|
X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, 2, os),
|
|
X(mktensor_1d)(1, 0, 0),
|
|
buf, buf + 1, ro + os, io + os),
|
|
NO_SLOW, 0, 0);
|
|
if (!cld1) goto nada;
|
|
|
|
cld2 = X(mkplan_f_d)(plnr,
|
|
X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, os, 2),
|
|
X(mktensor_1d)(1, 0, 0),
|
|
ro + os, io + os, buf, buf + 1),
|
|
NO_SLOW, 0, 0);
|
|
|
|
if (!cld2) goto nada;
|
|
|
|
/* plan for omega array */
|
|
cld_omega = X(mkplan_f_d)(plnr,
|
|
X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, 2, 2),
|
|
X(mktensor_1d)(1, 0, 0),
|
|
buf, buf + 1, buf, buf + 1),
|
|
NO_SLOW, ESTIMATE, 0);
|
|
if (!cld_omega) goto nada;
|
|
|
|
/* deallocate buffers; let awake() or apply() allocate them for real */
|
|
X(ifree)(buf);
|
|
buf = 0;
|
|
|
|
pln->cld1 = cld1;
|
|
pln->cld2 = cld2;
|
|
pln->cld_omega = cld_omega;
|
|
pln->omega = 0;
|
|
pln->n = n;
|
|
pln->is = is;
|
|
pln->os = os;
|
|
|
|
X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
|
|
pln->super.super.ops.other += (n - 1) * (4 * 2 + 6) + 6;
|
|
pln->super.super.ops.add += (n - 1) * 2 + 4;
|
|
pln->super.super.ops.mul += (n - 1) * 4;
|
|
|
|
return 1;
|
|
|
|
nada:
|
|
X(ifree0)(buf);
|
|
X(plan_destroy_internal)(cld_omega);
|
|
X(plan_destroy_internal)(cld2);
|
|
X(plan_destroy_internal)(cld1);
|
|
return 0;
|
|
}
|
|
|
|
static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
|
|
{
|
|
const problem_dft *p = (const problem_dft *) p_;
|
|
P *pln;
|
|
INT n;
|
|
INT is, os;
|
|
|
|
static const plan_adt padt = {
|
|
X(dft_solve), awake, print, destroy
|
|
};
|
|
|
|
if (!applicable(ego, p_, plnr))
|
|
return (plan *) 0;
|
|
|
|
n = p->sz->dims[0].n;
|
|
is = p->sz->dims[0].is;
|
|
os = p->sz->dims[0].os;
|
|
|
|
pln = MKPLAN_DFT(P, &padt, apply);
|
|
if (!mkP(pln, n, is, os, p->ro, p->io, plnr)) {
|
|
X(ifree)(pln);
|
|
return (plan *) 0;
|
|
}
|
|
return &(pln->super.super);
|
|
}
|
|
|
|
static solver *mksolver(void)
|
|
{
|
|
static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
|
|
S *slv = MKSOLVER(S, &sadt);
|
|
return &(slv->super);
|
|
}
|
|
|
|
void X(dft_rader_register)(planner *p)
|
|
{
|
|
REGISTER_SOLVER(p, mksolver());
|
|
}
|