furnace/extern/fftw/rdft/scalar/r2cb/hb_6.c

293 lines
7.7 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:50 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hb_6 -include rdft/scalar/hb.h */
/*
* This function contains 46 FP additions, 32 FP multiplications,
* (or, 24 additions, 10 multiplications, 22 fused multiply/add),
* 31 stack variables, 2 constants, and 24 memory accesses
*/
#include "rdft/scalar/hb.h"
static void hb_6(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 10, MAKE_VOLATILE_STRIDE(12, rs)) {
E Td, Tn, TO, TJ, TN, Tk, Tr, T3, TC, Ts, TQ, Ta, Tm, TF, TG;
{
E Tb, Tc, Tg, TH, Tj, TI;
Tb = ci[WS(rs, 5)];
Tc = cr[WS(rs, 3)];
Td = Tb - Tc;
{
E Te, Tf, Th, Ti;
Te = ci[WS(rs, 3)];
Tf = cr[WS(rs, 5)];
Tg = Te - Tf;
TH = Te + Tf;
Th = ci[WS(rs, 4)];
Ti = cr[WS(rs, 4)];
Tj = Th - Ti;
TI = Th + Ti;
}
Tn = Tj - Tg;
TO = TH - TI;
TJ = TH + TI;
TN = Tb + Tc;
Tk = Tg + Tj;
Tr = FNMS(KP500000000, Tk, Td);
}
{
E T6, TD, T9, TE, T1, T2;
T1 = cr[0];
T2 = ci[WS(rs, 2)];
T3 = T1 + T2;
TC = T1 - T2;
{
E T4, T5, T7, T8;
T4 = cr[WS(rs, 2)];
T5 = ci[0];
T6 = T4 + T5;
TD = T4 - T5;
T7 = ci[WS(rs, 1)];
T8 = cr[WS(rs, 1)];
T9 = T7 + T8;
TE = T7 - T8;
}
Ts = T6 - T9;
TQ = TD - TE;
Ta = T6 + T9;
Tm = FNMS(KP500000000, Ta, T3);
TF = TD + TE;
TG = FNMS(KP500000000, TF, TC);
}
cr[0] = T3 + Ta;
ci[0] = Td + Tk;
{
E To, Tt, Tp, Tu, Tl, Tq;
To = FNMS(KP866025403, Tn, Tm);
Tt = FNMS(KP866025403, Ts, Tr);
Tl = W[2];
Tp = Tl * To;
Tu = Tl * Tt;
Tq = W[3];
cr[WS(rs, 2)] = FNMS(Tq, Tt, Tp);
ci[WS(rs, 2)] = FMA(Tq, To, Tu);
}
{
E T13, TZ, T11, T12, T14, T10;
T13 = TN + TO;
T10 = TC + TF;
TZ = W[4];
T11 = TZ * T10;
T12 = W[5];
T14 = T12 * T10;
cr[WS(rs, 3)] = FNMS(T12, T13, T11);
ci[WS(rs, 3)] = FMA(TZ, T13, T14);
}
{
E Tw, Tz, Tx, TA, Tv, Ty;
Tw = FMA(KP866025403, Tn, Tm);
Tz = FMA(KP866025403, Ts, Tr);
Tv = W[6];
Tx = Tv * Tw;
TA = Tv * Tz;
Ty = W[7];
cr[WS(rs, 4)] = FNMS(Ty, Tz, Tx);
ci[WS(rs, 4)] = FMA(Ty, Tw, TA);
}
{
E TR, TX, TT, TV, TW, TY, TB, TL, TM, TS, TP, TU, TK;
TP = FNMS(KP500000000, TO, TN);
TR = FMA(KP866025403, TQ, TP);
TX = FNMS(KP866025403, TQ, TP);
TU = FMA(KP866025403, TJ, TG);
TT = W[8];
TV = TT * TU;
TW = W[9];
TY = TW * TU;
TK = FNMS(KP866025403, TJ, TG);
TB = W[0];
TL = TB * TK;
TM = W[1];
TS = TM * TK;
cr[WS(rs, 1)] = FNMS(TM, TR, TL);
ci[WS(rs, 1)] = FMA(TB, TR, TS);
cr[WS(rs, 5)] = FNMS(TW, TX, TV);
ci[WS(rs, 5)] = FMA(TT, TX, TY);
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 6 },
{ TW_NEXT, 1, 0 }
};
static const hc2hc_desc desc = { 6, "hb_6", twinstr, &GENUS, { 24, 10, 22, 0 } };
void X(codelet_hb_6) (planner *p) {
X(khc2hc_register) (p, hb_6, &desc);
}
#else
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hb_6 -include rdft/scalar/hb.h */
/*
* This function contains 46 FP additions, 28 FP multiplications,
* (or, 32 additions, 14 multiplications, 14 fused multiply/add),
* 27 stack variables, 2 constants, and 24 memory accesses
*/
#include "rdft/scalar/hb.h"
static void hb_6(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 10, MAKE_VOLATILE_STRIDE(12, rs)) {
E T3, Ty, Ta, TO, Tr, TB, Td, TE, Tk, TL, Tn, TH;
{
E T1, T2, Tb, Tc;
T1 = cr[0];
T2 = ci[WS(rs, 2)];
T3 = T1 + T2;
Ty = T1 - T2;
{
E T6, Tz, T9, TA;
{
E T4, T5, T7, T8;
T4 = cr[WS(rs, 2)];
T5 = ci[0];
T6 = T4 + T5;
Tz = T4 - T5;
T7 = ci[WS(rs, 1)];
T8 = cr[WS(rs, 1)];
T9 = T7 + T8;
TA = T7 - T8;
}
Ta = T6 + T9;
TO = KP866025403 * (Tz - TA);
Tr = KP866025403 * (T6 - T9);
TB = Tz + TA;
}
Tb = ci[WS(rs, 5)];
Tc = cr[WS(rs, 3)];
Td = Tb - Tc;
TE = Tb + Tc;
{
E Tg, TG, Tj, TF;
{
E Te, Tf, Th, Ti;
Te = ci[WS(rs, 3)];
Tf = cr[WS(rs, 5)];
Tg = Te - Tf;
TG = Te + Tf;
Th = ci[WS(rs, 4)];
Ti = cr[WS(rs, 4)];
Tj = Th - Ti;
TF = Th + Ti;
}
Tk = Tg + Tj;
TL = KP866025403 * (TG + TF);
Tn = KP866025403 * (Tj - Tg);
TH = TF - TG;
}
}
cr[0] = T3 + Ta;
ci[0] = Td + Tk;
{
E TC, TI, Tx, TD;
TC = Ty + TB;
TI = TE - TH;
Tx = W[4];
TD = W[5];
cr[WS(rs, 3)] = FNMS(TD, TI, Tx * TC);
ci[WS(rs, 3)] = FMA(TD, TC, Tx * TI);
}
{
E To, Tu, Ts, Tw, Tm, Tq;
Tm = FNMS(KP500000000, Ta, T3);
To = Tm - Tn;
Tu = Tm + Tn;
Tq = FNMS(KP500000000, Tk, Td);
Ts = Tq - Tr;
Tw = Tr + Tq;
{
E Tl, Tp, Tt, Tv;
Tl = W[2];
Tp = W[3];
cr[WS(rs, 2)] = FNMS(Tp, Ts, Tl * To);
ci[WS(rs, 2)] = FMA(Tl, Ts, Tp * To);
Tt = W[6];
Tv = W[7];
cr[WS(rs, 4)] = FNMS(Tv, Tw, Tt * Tu);
ci[WS(rs, 4)] = FMA(Tt, Tw, Tv * Tu);
}
}
{
E TM, TS, TQ, TU, TK, TP;
TK = FNMS(KP500000000, TB, Ty);
TM = TK - TL;
TS = TK + TL;
TP = FMA(KP500000000, TH, TE);
TQ = TO + TP;
TU = TP - TO;
{
E TJ, TN, TR, TT;
TJ = W[0];
TN = W[1];
cr[WS(rs, 1)] = FNMS(TN, TQ, TJ * TM);
ci[WS(rs, 1)] = FMA(TN, TM, TJ * TQ);
TR = W[8];
TT = W[9];
cr[WS(rs, 5)] = FNMS(TT, TU, TR * TS);
ci[WS(rs, 5)] = FMA(TT, TS, TR * TU);
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 6 },
{ TW_NEXT, 1, 0 }
};
static const hc2hc_desc desc = { 6, "hb_6", twinstr, &GENUS, { 32, 14, 14, 0 } };
void X(codelet_hb_6) (planner *p) {
X(khc2hc_register) (p, hb_6, &desc);
}
#endif