furnace/extern/fftw/mpi/dft-rank1.c
2022-05-31 03:24:29 -05:00

352 lines
11 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* Complex DFTs of rank == 1 via six-step algorithm. */
#include "mpi-dft.h"
#include "mpi-transpose.h"
#include "dft/dft.h"
typedef struct {
solver super;
rdftapply apply; /* apply_ddft_first or apply_ddft_last */
int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
} S;
typedef struct {
plan_mpi_dft super;
triggen *t;
plan *cldt, *cld_ddft, *cld_dft;
INT roff, ioff;
int preserve_input;
INT vn, xmin, xmax, xs, m, r;
} P;
static void do_twiddle(triggen *t, INT ir, INT m, INT vn, R *xr, R *xi)
{
void (*rotate)(triggen *, INT, R, R, R *) = t->rotate;
INT im, iv;
for (im = 0; im < m; ++im)
for (iv = 0; iv < vn; ++iv) {
/* TODO: modify/inline rotate function
so that it can do whole vn vector at once? */
R c[2];
rotate(t, ir * im, *xr, *xi, c);
*xr = c[0]; *xi = c[1];
xr += 2; xi += 2;
}
}
/* radix-r DFT of size r*m. This is equivalent to an m x r 2d DFT,
plus twiddle factors between the size-m and size-r 1d DFTs, where
the m dimension is initially distributed. The output is transposed
to r x m where the r dimension is distributed.
This algorithm follows the general sequence:
global transpose (m x r -> r x m)
DFTs of size m
multiply by twiddles + global transpose (r x m -> m x r)
DFTs of size r
global transpose (m x r -> r x m)
where the multiplication by twiddles can come before or after
the middle transpose. The first/last transposes are omitted
for SCRAMBLED_IN/OUT formats, respectively.
However, we wish to exploit our dft-rank1-bigvec solver, which
solves a vector of distributed DFTs via transpose+dft+transpose.
Therefore, we can group *either* the DFTs of size m *or* the
DFTs of size r with their surrounding transposes as a single
distributed-DFT (ddft) plan. These two variations correspond to
apply_ddft_first or apply_ddft_last, respectively.
*/
static void apply_ddft_first(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
plan_dft *cld_dft;
plan_rdft *cldt, *cld_ddft;
INT roff, ioff, im, mmax, ms, r, vn;
triggen *t;
R *dI, *dO;
/* distributed size-m DFTs, with output in m x r format */
cld_ddft = (plan_rdft *) ego->cld_ddft;
cld_ddft->apply(ego->cld_ddft, I, O);
cldt = (plan_rdft *) ego->cldt;
if (ego->preserve_input || !cldt) I = O;
/* twiddle multiplications, followed by 1d DFTs of size-r */
cld_dft = (plan_dft *) ego->cld_dft;
roff = ego->roff; ioff = ego->ioff;
mmax = ego->xmax; ms = ego->xs;
t = ego->t; r = ego->r; vn = ego->vn;
dI = O; dO = I;
for (im = ego->xmin; im <= mmax; ++im) {
do_twiddle(t, im, r, vn, dI+roff, dI+ioff);
cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff);
dI += ms; dO += ms;
}
/* final global transpose (m x r -> r x m), if not SCRAMBLED_OUT */
if (cldt)
cldt->apply((plan *) cldt, I, O);
}
static void apply_ddft_last(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
plan_dft *cld_dft;
plan_rdft *cldt, *cld_ddft;
INT roff, ioff, ir, rmax, rs, m, vn;
triggen *t;
R *dI, *dO0, *dO;
/* initial global transpose (m x r -> r x m), if not SCRAMBLED_IN */
cldt = (plan_rdft *) ego->cldt;
if (cldt) {
cldt->apply((plan *) cldt, I, O);
dI = O;
}
else
dI = I;
if (ego->preserve_input) dO = O; else dO = I;
dO0 = dO;
/* 1d DFTs of size m, followed by twiddle multiplications */
cld_dft = (plan_dft *) ego->cld_dft;
roff = ego->roff; ioff = ego->ioff;
rmax = ego->xmax; rs = ego->xs;
t = ego->t; m = ego->m; vn = ego->vn;
for (ir = ego->xmin; ir <= rmax; ++ir) {
cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff);
do_twiddle(t, ir, m, vn, dO+roff, dO+ioff);
dI += rs; dO += rs;
}
/* distributed size-r DFTs, with output in r x m format */
cld_ddft = (plan_rdft *) ego->cld_ddft;
cld_ddft->apply(ego->cld_ddft, dO0, O);
}
static int applicable(const S *ego, const problem *p_,
const planner *plnr,
INT *r, INT rblock[2], INT mblock[2])
{
const problem_mpi_dft *p = (const problem_mpi_dft *) p_;
int n_pes;
MPI_Comm_size(p->comm, &n_pes);
return (1
&& p->sz->rnk == 1
&& ONLY_SCRAMBLEDP(p->flags)
&& (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
&& p->I != p->O))
&& (!(p->flags & SCRAMBLED_IN) || ego->apply == apply_ddft_last)
&& (!(p->flags & SCRAMBLED_OUT) || ego->apply == apply_ddft_first)
&& (!NO_SLOWP(plnr) /* slow if dft-serial is applicable */
|| !XM(dft_serial_applicable)(p))
/* disallow if dft-rank1-bigvec is applicable since the
data distribution may be slightly different (ugh!) */
&& (p->vn < n_pes || p->flags)
&& (*r = XM(choose_radix)(p->sz->dims[0], n_pes,
p->flags, p->sign,
rblock, mblock))
/* ddft_first or last has substantial advantages in the
bigvec transpositions for the common case where
n_pes == n/r or r, respectively */
&& (!NO_UGLYP(plnr)
|| !(*r == n_pes && ego->apply == apply_ddft_first)
|| !(p->sz->dims[0].n / *r == n_pes
&& ego->apply == apply_ddft_last))
);
}
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(plan_awake)(ego->cldt, wakefulness);
X(plan_awake)(ego->cld_dft, wakefulness);
X(plan_awake)(ego->cld_ddft, wakefulness);
switch (wakefulness) {
case SLEEPY:
X(triggen_destroy)(ego->t); ego->t = 0;
break;
default:
ego->t = X(mktriggen)(AWAKE_SQRTN_TABLE, ego->r * ego->m);
break;
}
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cldt);
X(plan_destroy_internal)(ego->cld_dft);
X(plan_destroy_internal)(ego->cld_ddft);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
p->print(p, "(mpi-dft-rank1/%D%s%s%(%p%)%(%p%)%(%p%))",
ego->r,
ego->super.apply == apply_ddft_first ? "/first" : "/last",
ego->preserve_input==2 ?"/p":"",
ego->cld_ddft, ego->cld_dft, ego->cldt);
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const S *ego = (const S *) ego_;
const problem_mpi_dft *p;
P *pln;
plan *cld_dft = 0, *cld_ddft = 0, *cldt = 0;
R *ri, *ii, *ro, *io, *I, *O;
INT r, rblock[2], m, mblock[2], rp, mp, mpblock[2], mpb;
int my_pe, n_pes, preserve_input, ddft_first;
dtensor *sz;
static const plan_adt padt = {
XM(dft_solve), awake, print, destroy
};
UNUSED(ego);
if (!applicable(ego, p_, plnr, &r, rblock, mblock))
return (plan *) 0;
p = (const problem_mpi_dft *) p_;
MPI_Comm_rank(p->comm, &my_pe);
MPI_Comm_size(p->comm, &n_pes);
m = p->sz->dims[0].n / r;
/* some hackery so that we can plan both ddft_first and ddft_last
as if they were ddft_first */
if ((ddft_first = (ego->apply == apply_ddft_first))) {
rp = r; mp = m;
mpblock[IB] = mblock[IB]; mpblock[OB] = mblock[OB];
mpb = XM(block)(mp, mpblock[OB], my_pe);
}
else {
rp = m; mp = r;
mpblock[IB] = rblock[IB]; mpblock[OB] = rblock[OB];
mpb = XM(block)(mp, mpblock[IB], my_pe);
}
preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
sz = XM(mkdtensor)(1);
sz->dims[0].n = mp;
sz->dims[0].b[IB] = mpblock[IB];
sz->dims[0].b[OB] = mpblock[OB];
I = (ddft_first || !preserve_input) ? p->I : p->O;
O = p->O;
cld_ddft = X(mkplan_d)(plnr, XM(mkproblem_dft_d)(sz, rp * p->vn,
I, O, p->comm, p->sign,
RANK1_BIGVEC_ONLY));
if (XM(any_true)(!cld_ddft, p->comm)) goto nada;
I = TAINT((ddft_first || !p->flags) ? p->O : p->I, rp * p->vn * 2);
O = TAINT((preserve_input || (ddft_first && p->flags)) ? p->O : p->I,
rp * p->vn * 2);
X(extract_reim)(p->sign, I, &ri, &ii);
X(extract_reim)(p->sign, O, &ro, &io);
cld_dft = X(mkplan_d)(plnr,
X(mkproblem_dft_d)(X(mktensor_1d)(rp, p->vn*2,p->vn*2),
X(mktensor_1d)(p->vn, 2, 2),
ri, ii, ro, io));
if (XM(any_true)(!cld_dft, p->comm)) goto nada;
if (!p->flags) { /* !(SCRAMBLED_IN or SCRAMBLED_OUT) */
I = (ddft_first && preserve_input) ? p->O : p->I;
O = p->O;
cldt = X(mkplan_d)(plnr,
XM(mkproblem_transpose)(
m, r, p->vn * 2,
I, O,
ddft_first ? mblock[OB] : mblock[IB],
ddft_first ? rblock[OB] : rblock[IB],
p->comm, 0));
if (XM(any_true)(!cldt, p->comm)) goto nada;
}
pln = MKPLAN_MPI_DFT(P, &padt, ego->apply);
pln->cld_ddft = cld_ddft;
pln->cld_dft = cld_dft;
pln->cldt = cldt;
pln->preserve_input = preserve_input;
X(extract_reim)(p->sign, p->O, &ro, &io);
pln->roff = ro - p->O;
pln->ioff = io - p->O;
pln->vn = p->vn;
pln->m = m;
pln->r = r;
pln->xmin = (ddft_first ? mblock[OB] : rblock[IB]) * my_pe;
pln->xmax = pln->xmin + mpb - 1;
pln->xs = rp * p->vn * 2;
pln->t = 0;
X(ops_add)(&cld_ddft->ops, &cld_dft->ops, &pln->super.super.ops);
if (cldt) X(ops_add2)(&cldt->ops, &pln->super.super.ops);
{
double n0 = (1 + pln->xmax - pln->xmin) * (mp - 1) * pln->vn;
pln->super.super.ops.mul += 8 * n0;
pln->super.super.ops.add += 4 * n0;
pln->super.super.ops.other += 8 * n0;
}
return &(pln->super.super);
nada:
X(plan_destroy_internal)(cldt);
X(plan_destroy_internal)(cld_dft);
X(plan_destroy_internal)(cld_ddft);
return (plan *) 0;
}
static solver *mksolver(rdftapply apply, int preserve_input)
{
static const solver_adt sadt = { PROBLEM_MPI_DFT, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
slv->apply = apply;
slv->preserve_input = preserve_input;
return &(slv->super);
}
void XM(dft_rank1_register)(planner *p)
{
rdftapply apply[] = { apply_ddft_first, apply_ddft_last };
unsigned int iapply;
int preserve_input;
for (iapply = 0; iapply < sizeof(apply) / sizeof(apply[0]); ++iapply)
for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
REGISTER_SOLVER(p, mksolver(apply[iapply], preserve_input));
}